A novel feature selection method for twin support vector machine

超平面 特征选择 支持向量机 模式识别(心理学) 特征(语言学) 人工智能 水准点(测量) 计算机科学 线性规划 整数规划 选择(遗传算法) 排名(信息检索) 基质(化学分析) 数学 算法 语言学 哲学 材料科学 几何学 大地测量学 复合材料 地理
作者
Lan Bai,Zhen Wang,Yuan‐Hai Shao,Ning Deng
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:59: 1-8 被引量:38
标识
DOI:10.1016/j.knosys.2014.01.025
摘要

Both support vector machine (SVM) and twin support vector machine (TWSVM) are powerful classification tools. However, in contrast to many SVM-based feature selection methods, TWSVM has not any corresponding one due to its different mechanism up to now. In this paper, we propose a feature selection method based on TWSVM, called FTSVM. It is interesting because of the advantages of TWSVM in many cases. Our FTSVM is quite different from the SVM-based feature selection methods. In fact, linear SVM constructs a single separating hyperplane which corresponds a single weight for each feature, whereas linear TWSVM constructs two fitting hyperplanes which corresponds to two weights for each feature. In our linear FTSVM, in order to link these two fitting hyperplanes, a feature selection matrix is introduced. Thus, the feature selection becomes to find an optimal matrix, leading to solve a multi-objective mixed-integer programming problem by a greedy algorithm. In addition, the linear FTSVM has been extended to the nonlinear case. Furthermore, a feature ranking strategy based on FTSVM is also suggested. The experimental results on several public available benchmark datasets indicate that our FTSVM not only gives nice feature selection on both linear and nonlinear cases but also improves the performance of TWSVM efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈沈完成签到,获得积分10
刚刚
jing发布了新的文献求助10
刚刚
wxr完成签到 ,获得积分10
刚刚
刚刚
2秒前
一棵完成签到 ,获得积分10
2秒前
qiao完成签到,获得积分10
2秒前
2秒前
汉堡包应助Pendulium采纳,获得10
3秒前
hdbys完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
周轩完成签到,获得积分10
5秒前
liusj完成签到,获得积分10
5秒前
ss发布了新的文献求助10
5秒前
Miyo完成签到,获得积分10
6秒前
6秒前
6秒前
高贵的帽子完成签到 ,获得积分10
6秒前
AN完成签到,获得积分10
6秒前
Catalysis123发布了新的文献求助10
7秒前
7秒前
开心的人杰完成签到,获得积分10
8秒前
科目三应助儒雅大象采纳,获得10
9秒前
共享精神应助Feijiahao采纳,获得10
9秒前
JBY发布了新的文献求助10
9秒前
10秒前
顺顺黎黎完成签到,获得积分10
10秒前
10秒前
10秒前
cjdsb发布了新的文献求助20
11秒前
liusj发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
陈媛发布了新的文献求助20
13秒前
shirley发布了新的文献求助10
14秒前
加缪应助Perseus采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097673
求助须知:如何正确求助?哪些是违规求助? 4310117
关于积分的说明 13429226
捐赠科研通 4137515
什么是DOI,文献DOI怎么找? 2266700
邀请新用户注册赠送积分活动 1269881
关于科研通互助平台的介绍 1206170