A Grid-Based Evolutionary Algorithm for Many-Objective Optimization

网格 进化算法 多目标优化 计算机科学 数学优化 帕累托原理 可扩展性 进化计算 排名(信息检索) 最优化问题 趋同(经济学) 算法 数学 人工智能 几何学 数据库 经济 经济增长
作者
Shengxiang Yang,Miqing Li,Xiaohui Liu,Jinhua Zheng
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:17 (5): 721-736 被引量:814
标识
DOI:10.1109/tevc.2012.2227145
摘要

Balancing convergence and diversity plays a key role in evolutionary multiobjective optimization (EMO). Most current EMO algorithms perform well on problems with two or three objectives, but encounter difficulties in their scalability to many-objective optimization. This paper proposes a grid-based evolutionary algorithm (GrEA) to solve many-objective optimization problems. Our aim is to exploit the potential of the grid-based approach to strengthen the selection pressure toward the optimal direction while maintaining an extensive and uniform distribution among solutions. To this end, two concepts-grid dominance and grid difference-are introduced to determine the mutual relationship of individuals in a grid environment. Three grid-based criteria, i.e., grid ranking, grid crowding distance, and grid coordinate point distance, are incorporated into the fitness of individuals to distinguish them in both the mating and environmental selection processes. Moreover, a fitness adjustment strategy is developed by adaptively punishing individuals based on the neighborhood and grid dominance relations in order to avoid partial overcrowding as well as guide the search toward different directions in the archive. Six state-of-the-art EMO algorithms are selected as the peer algorithms to validate GrEA. A series of extensive experiments is conducted on 52 instances of nine test problems taken from three test suites. The experimental results show the effectiveness and competitiveness of the proposed GrEA in balancing convergence and diversity. The solution set obtained by GrEA can achieve a better coverage of the Pareto front than that obtained by other algorithms on most of the tested problems. Additionally, a parametric study reveals interesting insights of the division parameter in a grid and also indicates useful values for problems with different characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助Ye采纳,获得10
1秒前
爆米花应助starlight采纳,获得10
2秒前
zhzhzh完成签到,获得积分10
2秒前
3秒前
4秒前
6秒前
6秒前
抚琴祛魅完成签到,获得积分10
7秒前
七七八发布了新的文献求助10
9秒前
Uncanny发布了新的文献求助10
10秒前
HWM发布了新的文献求助10
11秒前
13秒前
木子李完成签到,获得积分20
14秒前
科研通AI5应助繁荣的又夏采纳,获得10
15秒前
17秒前
Uncanny完成签到,获得积分10
17秒前
17秒前
河豚不擦鞋完成签到 ,获得积分10
20秒前
Marvin42发布了新的文献求助10
21秒前
21秒前
烫睫毛完成签到,获得积分10
22秒前
22秒前
木子李发布了新的文献求助10
24秒前
冬虫草发布了新的文献求助10
24秒前
顺利冬瓜完成签到 ,获得积分10
26秒前
Jasper应助靓丽的沁采纳,获得10
26秒前
问之发布了新的文献求助30
26秒前
27秒前
Lucas应助七七八采纳,获得10
28秒前
慕青应助标致采纳,获得10
29秒前
HWM完成签到,获得积分10
30秒前
liangjiangbo发布了新的文献求助10
31秒前
32秒前
32秒前
36秒前
SOAR完成签到,获得积分10
38秒前
木子李发布了新的文献求助10
38秒前
问之完成签到,获得积分10
38秒前
款冬发布了新的文献求助10
40秒前
外向白开水完成签到,获得积分10
42秒前
高分求助中
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
机器学习与人工智能:从理论到实践 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3706116
求助须知:如何正确求助?哪些是违规求助? 3255274
关于积分的说明 9894123
捐赠科研通 2967625
什么是DOI,文献DOI怎么找? 1627386
邀请新用户注册赠送积分活动 771471
科研通“疑难数据库(出版商)”最低求助积分说明 743382