Retrieving seawater turbidity from Landsat TM data by regressions and an artificial neural network

环境科学 浊度 遥感 人工神经网络 海水
作者
Thian Yew Gan,Oscar Anthony Kalinga,Koichiro Ohgushi,Hiroyuki Araki
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:25 (21): 4593-4615 被引量:18
标识
DOI:10.1080/01431160410001655921
摘要

The radiance reflected at the sea surface (RW (λ)) of the Ariake Sea, Japan, was first estimated by subtracting Lowtran 7 estimated Rayleigh and aerosol scattered radiances from Landsat Thematic Mapper measured radiance. Then RW (λ) was averaged from 4×4 pixel windows centred at 33 sampling sites of the Ariake Sea and the data calibrated against the observed Secchi disk depth (SDD) using linear (LR) and nonlinear (NLR) regressions, and an artificial neural network (ANN) algorithm called the Modified Counter Propagation Network (MCPN). We found that at the validation stage, multi-date RW (λ) data that are mainly based on the visible channels of Landsat Thematic Mapper (TM) predict more accurate and dependable SDDs than single-date RW (λ) data. Furthermore, the NLR describes the SDD/RW (λ) relationship more closely than the LR. As an ANN, MCPN possesses non-linearity, inter-connectivity, and an ability to learn and generalize information from complex or poorly understood systems, which enables it to even better represent the SDD/RW (λ) relationship than the NLR. Our study confirms the feasibility of retrieving SDD (or turbidity) from Landsat TM data, and it seems that the calibrated MCPN and possibly NLR are portable temporally within the Ariake Sea. Lastly, the coefficient of efficiency Ef is a more stringent and probably a more accurate statistical measure than the popular coefficient of determination R 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
刘JJ发布了新的文献求助10
3秒前
3秒前
6秒前
王学成发布了新的文献求助10
6秒前
8秒前
8秒前
酷波er应助许多年以后采纳,获得10
10秒前
10秒前
pluto应助刘JJ采纳,获得10
11秒前
有志者完成签到,获得积分10
11秒前
11秒前
上官若男应助科研通管家采纳,获得30
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
烟花应助追寻松采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
wu8577应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
唐宇轩完成签到 ,获得积分10
13秒前
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得150
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得10
14秒前
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
14秒前
YHY应助科研通管家采纳,获得10
14秒前
Jasper应助惠戾采纳,获得10
14秒前
Hello应助banana采纳,获得10
14秒前
18秒前
明理映真完成签到,获得积分10
20秒前
dangziutiu完成签到 ,获得积分10
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962657
求助须知:如何正确求助?哪些是违规求助? 3508612
关于积分的说明 11142006
捐赠科研通 3241384
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872916
科研通“疑难数据库(出版商)”最低求助积分说明 803517