Retrieving seawater turbidity from Landsat TM data by regressions and an artificial neural network

环境科学 浊度 遥感 人工神经网络 海水
作者
Thian Yew Gan,Oscar Anthony Kalinga,Koichiro Ohgushi,Hiroyuki Araki
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:25 (21): 4593-4615 被引量:18
标识
DOI:10.1080/01431160410001655921
摘要

The radiance reflected at the sea surface (RW (λ)) of the Ariake Sea, Japan, was first estimated by subtracting Lowtran 7 estimated Rayleigh and aerosol scattered radiances from Landsat Thematic Mapper measured radiance. Then RW (λ) was averaged from 4×4 pixel windows centred at 33 sampling sites of the Ariake Sea and the data calibrated against the observed Secchi disk depth (SDD) using linear (LR) and nonlinear (NLR) regressions, and an artificial neural network (ANN) algorithm called the Modified Counter Propagation Network (MCPN). We found that at the validation stage, multi-date RW (λ) data that are mainly based on the visible channels of Landsat Thematic Mapper (TM) predict more accurate and dependable SDDs than single-date RW (λ) data. Furthermore, the NLR describes the SDD/RW (λ) relationship more closely than the LR. As an ANN, MCPN possesses non-linearity, inter-connectivity, and an ability to learn and generalize information from complex or poorly understood systems, which enables it to even better represent the SDD/RW (λ) relationship than the NLR. Our study confirms the feasibility of retrieving SDD (or turbidity) from Landsat TM data, and it seems that the calibrated MCPN and possibly NLR are portable temporally within the Ariake Sea. Lastly, the coefficient of efficiency Ef is a more stringent and probably a more accurate statistical measure than the popular coefficient of determination R 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助JasVe采纳,获得50
1秒前
freedom发布了新的文献求助10
2秒前
杨森omg发布了新的文献求助10
3秒前
fancy发布了新的文献求助10
3秒前
3秒前
好好学习发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
丘比特应助低调采纳,获得10
6秒前
天天快乐应助Junli采纳,获得10
6秒前
ding应助xiaoyu采纳,获得10
7秒前
迷失浪人发布了新的文献求助10
8秒前
pkaq发布了新的文献求助10
8秒前
咎星完成签到,获得积分10
8秒前
yang发布了新的文献求助10
8秒前
Lucas应助Siri采纳,获得30
9秒前
Orange应助syh采纳,获得20
9秒前
yl发布了新的文献求助10
9秒前
lll完成签到 ,获得积分10
9秒前
虎虎虎发布了新的文献求助10
9秒前
尊敬的左蓝完成签到,获得积分10
10秒前
YY完成签到,获得积分10
10秒前
WM应助wangtingyu采纳,获得10
11秒前
12秒前
CipherSage应助wang11采纳,获得10
12秒前
萧水白应助扬帆起航采纳,获得20
12秒前
12秒前
菠萝菠萝哒应助曾鸣采纳,获得10
14秒前
14秒前
老徐完成签到,获得积分10
14秒前
14秒前
16秒前
Jasper应助子卿采纳,获得10
16秒前
观妙散人发布了新的文献求助10
17秒前
iVANPENNY应助阳光的夏槐采纳,获得10
17秒前
迷失浪人完成签到,获得积分10
18秒前
18秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312794
求助须知:如何正确求助?哪些是违规求助? 2945217
关于积分的说明 8523802
捐赠科研通 2621000
什么是DOI,文献DOI怎么找? 1433267
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650271