The radiance reflected at the sea surface (RW (λ)) of the Ariake Sea, Japan, was first estimated by subtracting Lowtran 7 estimated Rayleigh and aerosol scattered radiances from Landsat Thematic Mapper measured radiance. Then RW (λ) was averaged from 4×4 pixel windows centred at 33 sampling sites of the Ariake Sea and the data calibrated against the observed Secchi disk depth (SDD) using linear (LR) and nonlinear (NLR) regressions, and an artificial neural network (ANN) algorithm called the Modified Counter Propagation Network (MCPN). We found that at the validation stage, multi-date RW (λ) data that are mainly based on the visible channels of Landsat Thematic Mapper (TM) predict more accurate and dependable SDDs than single-date RW (λ) data. Furthermore, the NLR describes the SDD/RW (λ) relationship more closely than the LR. As an ANN, MCPN possesses non-linearity, inter-connectivity, and an ability to learn and generalize information from complex or poorly understood systems, which enables it to even better represent the SDD/RW (λ) relationship than the NLR. Our study confirms the feasibility of retrieving SDD (or turbidity) from Landsat TM data, and it seems that the calibrated MCPN and possibly NLR are portable temporally within the Ariake Sea. Lastly, the coefficient of efficiency Ef is a more stringent and probably a more accurate statistical measure than the popular coefficient of determination R 2.