亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Retrieving seawater turbidity from Landsat TM data by regressions and an artificial neural network

环境科学 浊度 遥感 人工神经网络 海水
作者
Thian Yew Gan,Oscar Anthony Kalinga,Koichiro Ohgushi,Hiroyuki Araki
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:25 (21): 4593-4615 被引量:18
标识
DOI:10.1080/01431160410001655921
摘要

The radiance reflected at the sea surface (RW (λ)) of the Ariake Sea, Japan, was first estimated by subtracting Lowtran 7 estimated Rayleigh and aerosol scattered radiances from Landsat Thematic Mapper measured radiance. Then RW (λ) was averaged from 4×4 pixel windows centred at 33 sampling sites of the Ariake Sea and the data calibrated against the observed Secchi disk depth (SDD) using linear (LR) and nonlinear (NLR) regressions, and an artificial neural network (ANN) algorithm called the Modified Counter Propagation Network (MCPN). We found that at the validation stage, multi-date RW (λ) data that are mainly based on the visible channels of Landsat Thematic Mapper (TM) predict more accurate and dependable SDDs than single-date RW (λ) data. Furthermore, the NLR describes the SDD/RW (λ) relationship more closely than the LR. As an ANN, MCPN possesses non-linearity, inter-connectivity, and an ability to learn and generalize information from complex or poorly understood systems, which enables it to even better represent the SDD/RW (λ) relationship than the NLR. Our study confirms the feasibility of retrieving SDD (or turbidity) from Landsat TM data, and it seems that the calibrated MCPN and possibly NLR are portable temporally within the Ariake Sea. Lastly, the coefficient of efficiency Ef is a more stringent and probably a more accurate statistical measure than the popular coefficient of determination R 2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
27秒前
32秒前
willlee完成签到 ,获得积分10
33秒前
33秒前
LIJinlin完成签到,获得积分10
34秒前
雪白傲薇完成签到 ,获得积分10
37秒前
LIJinlin发布了新的文献求助10
37秒前
扯扯完成签到,获得积分20
47秒前
51秒前
讨厌水煮蛋完成签到,获得积分10
51秒前
57秒前
1分钟前
扯扯发布了新的文献求助10
1分钟前
liuliu发布了新的文献求助10
1分钟前
讨厌水煮蛋发布了新的文献求助100
1分钟前
555完成签到,获得积分10
1分钟前
1分钟前
sera发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
老不靠谱发布了新的文献求助10
1分钟前
刘大宝发布了新的文献求助10
1分钟前
缪忆寒完成签到,获得积分10
1分钟前
充电宝应助刘大宝采纳,获得10
1分钟前
lovelife完成签到,获得积分10
1分钟前
sera完成签到 ,获得积分10
1分钟前
刘大宝完成签到,获得积分20
2分钟前
城。完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
yangzai完成签到 ,获得积分10
3分钟前
CJH104完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772837
求助须知:如何正确求助?哪些是违规求助? 5603302
关于积分的说明 15430141
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639601
邀请新用户注册赠送积分活动 1587507
关于科研通互助平台的介绍 1542432