已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A hybrid learning approach to tissue recognition in wound images

人工智能 计算机科学 机器学习 范畴变量 人工神经网络 分割 感知器 模式识别(心理学) 朴素贝叶斯分类器 多层感知器 鉴定(生物学) 贝叶斯概率 支持向量机 植物 生物
作者
Francisco J. Veredas,Héctor Mesa,Laura Morente
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald (MCB UP)]
卷期号:2 (2): 327-347 被引量:10
标识
DOI:10.1108/17563780910959929
摘要

Purpose Pressure ulcer is a clinical pathology of localized damage to the skin and underlying tissue caused by pressure, shear, and friction. Diagnosis, treatment and care of pressure ulcers involve high costs for sanitary systems. Accurate wound evaluation is a critical task to optimize the efficacy of treatments and health‐care. Clinicians evaluate the pressure ulcers by visual inspection of the damaged tissues, which is an imprecise manner of assessing the wound state. Current computer vision approaches do not offer a global solution to this particular problem. The purpose of this paper is to use a hybrid learning approach based on neural and Bayesian networks to design a computational system to automatic tissue identification in wound images. Design/methodology/approach A mean shift procedure and a region‐growing strategy are implemented for effective region segmentation. Color and texture features are extracted from these segmented regions. A set of k multi‐layer perceptrons is trained with inputs consisting of color and texture patterns, and outputs consisting of categorical tissue classes determined by clinical experts. This training procedure is driven by a k ‐fold cross‐validation method. Finally, a Bayesian committee machine is formed by training a Bayesian network to combine the classifications of the k neural networks (NNs). Findings The authors outcomes show high efficiency rates from a two‐stage cascade approach to tissue identification. Giving a non‐homogeneous distribution of pattern classes, this hybrid approach has shown an additional advantage of increasing the classification efficiency when classifying patterns with relative low frequencies. Practical implications The methodology and results presented in this paper could have important implications to the field of clinical pressure ulcer evaluation and diagnosis. Originality/value The novelty associated with this work is the use of a hybrid approach consisting of NNs and Bayesian classifiers which are combined to increase the performance of a pattern recognition task applied to the real clinical problem of tissue detection under non‐controlled illumination conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmmc大好完成签到,获得积分10
刚刚
豆豆完成签到,获得积分10
1秒前
时空星客发布了新的文献求助10
2秒前
2秒前
玛琪玛小姐的狗完成签到,获得积分20
4秒前
CC发布了新的文献求助10
8秒前
DiuO完成签到,获得积分10
9秒前
10秒前
今天开心吗完成签到 ,获得积分10
12秒前
16秒前
Connor完成签到,获得积分10
23秒前
结实凌瑶完成签到 ,获得积分10
24秒前
24秒前
三心草完成签到 ,获得积分10
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
26秒前
852应助科研通管家采纳,获得10
26秒前
28秒前
向守卫完成签到,获得积分10
38秒前
教生物的杨教授完成签到,获得积分10
47秒前
55秒前
Anna完成签到 ,获得积分10
58秒前
Jackylee完成签到,获得积分10
59秒前
HarryYang完成签到 ,获得积分10
59秒前
shippou完成签到 ,获得积分10
1分钟前
BeBrave1028完成签到,获得积分10
1分钟前
完美世界应助nuo采纳,获得30
1分钟前
刻苦的小土豆完成签到 ,获得积分10
1分钟前
Zhao完成签到 ,获得积分10
1分钟前
温柔向真发布了新的文献求助10
1分钟前
大模型应助安生生采纳,获得10
1分钟前
1分钟前
YUEER完成签到,获得积分20
1分钟前
nuo发布了新的文献求助30
1分钟前
1分钟前
沅沅选手发布了新的文献求助10
1分钟前
急诊守夜人完成签到 ,获得积分10
1分钟前
histamin完成签到,获得积分10
1分钟前
1分钟前
沅沅选手完成签到,获得积分10
1分钟前
安生生发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870534
求助须知:如何正确求助?哪些是违规求助? 6463278
关于积分的说明 15664266
捐赠科研通 4986619
什么是DOI,文献DOI怎么找? 2688914
邀请新用户注册赠送积分活动 1631289
关于科研通互助平台的介绍 1589336