亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid learning approach to tissue recognition in wound images

人工智能 计算机科学 机器学习 范畴变量 人工神经网络 分割 感知器 模式识别(心理学) 朴素贝叶斯分类器 多层感知器 鉴定(生物学) 贝叶斯概率 支持向量机 植物 生物
作者
Francisco J. Veredas,Héctor Mesa,Laura Morente
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald (MCB UP)]
卷期号:2 (2): 327-347 被引量:10
标识
DOI:10.1108/17563780910959929
摘要

Purpose Pressure ulcer is a clinical pathology of localized damage to the skin and underlying tissue caused by pressure, shear, and friction. Diagnosis, treatment and care of pressure ulcers involve high costs for sanitary systems. Accurate wound evaluation is a critical task to optimize the efficacy of treatments and health‐care. Clinicians evaluate the pressure ulcers by visual inspection of the damaged tissues, which is an imprecise manner of assessing the wound state. Current computer vision approaches do not offer a global solution to this particular problem. The purpose of this paper is to use a hybrid learning approach based on neural and Bayesian networks to design a computational system to automatic tissue identification in wound images. Design/methodology/approach A mean shift procedure and a region‐growing strategy are implemented for effective region segmentation. Color and texture features are extracted from these segmented regions. A set of k multi‐layer perceptrons is trained with inputs consisting of color and texture patterns, and outputs consisting of categorical tissue classes determined by clinical experts. This training procedure is driven by a k ‐fold cross‐validation method. Finally, a Bayesian committee machine is formed by training a Bayesian network to combine the classifications of the k neural networks (NNs). Findings The authors outcomes show high efficiency rates from a two‐stage cascade approach to tissue identification. Giving a non‐homogeneous distribution of pattern classes, this hybrid approach has shown an additional advantage of increasing the classification efficiency when classifying patterns with relative low frequencies. Practical implications The methodology and results presented in this paper could have important implications to the field of clinical pressure ulcer evaluation and diagnosis. Originality/value The novelty associated with this work is the use of a hybrid approach consisting of NNs and Bayesian classifiers which are combined to increase the performance of a pattern recognition task applied to the real clinical problem of tissue detection under non‐controlled illumination conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sirkey发布了新的文献求助10
3秒前
33秒前
英姑应助草上飞李四采纳,获得10
38秒前
哞哞完成签到 ,获得积分10
52秒前
sirkey完成签到,获得积分10
1分钟前
机灵毛豆完成签到 ,获得积分10
1分钟前
PYF完成签到,获得积分10
2分钟前
pjy完成签到 ,获得积分10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
研友_VZG7GZ应助帅气的如豹采纳,获得10
3分钟前
火星仙人掌完成签到 ,获得积分10
3分钟前
3分钟前
眯眯眼的诗桃完成签到 ,获得积分20
3分钟前
眯眯眼的诗桃关注了科研通微信公众号
3分钟前
3分钟前
3分钟前
无花果应助谭代涛采纳,获得10
3分钟前
4分钟前
谭代涛发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
Rin发布了新的文献求助10
5分钟前
Rin完成签到,获得积分20
5分钟前
Alisha完成签到,获得积分10
5分钟前
英姑应助小不点采纳,获得10
5分钟前
斯文的苡完成签到,获得积分10
5分钟前
6分钟前
小不点发布了新的文献求助10
6分钟前
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599798
求助须知:如何正确求助?哪些是违规求助? 4685530
关于积分的说明 14838588
捐赠科研通 4671137
什么是DOI,文献DOI怎么找? 2538247
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470924