A hybrid learning approach to tissue recognition in wound images

人工智能 计算机科学 机器学习 范畴变量 人工神经网络 分割 感知器 模式识别(心理学) 朴素贝叶斯分类器 多层感知器 鉴定(生物学) 贝叶斯概率 支持向量机 植物 生物
作者
Francisco J. Veredas,Héctor Mesa,Laura Morente
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald Publishing Limited]
卷期号:2 (2): 327-347 被引量:10
标识
DOI:10.1108/17563780910959929
摘要

Purpose Pressure ulcer is a clinical pathology of localized damage to the skin and underlying tissue caused by pressure, shear, and friction. Diagnosis, treatment and care of pressure ulcers involve high costs for sanitary systems. Accurate wound evaluation is a critical task to optimize the efficacy of treatments and health‐care. Clinicians evaluate the pressure ulcers by visual inspection of the damaged tissues, which is an imprecise manner of assessing the wound state. Current computer vision approaches do not offer a global solution to this particular problem. The purpose of this paper is to use a hybrid learning approach based on neural and Bayesian networks to design a computational system to automatic tissue identification in wound images. Design/methodology/approach A mean shift procedure and a region‐growing strategy are implemented for effective region segmentation. Color and texture features are extracted from these segmented regions. A set of k multi‐layer perceptrons is trained with inputs consisting of color and texture patterns, and outputs consisting of categorical tissue classes determined by clinical experts. This training procedure is driven by a k ‐fold cross‐validation method. Finally, a Bayesian committee machine is formed by training a Bayesian network to combine the classifications of the k neural networks (NNs). Findings The authors outcomes show high efficiency rates from a two‐stage cascade approach to tissue identification. Giving a non‐homogeneous distribution of pattern classes, this hybrid approach has shown an additional advantage of increasing the classification efficiency when classifying patterns with relative low frequencies. Practical implications The methodology and results presented in this paper could have important implications to the field of clinical pressure ulcer evaluation and diagnosis. Originality/value The novelty associated with this work is the use of a hybrid approach consisting of NNs and Bayesian classifiers which are combined to increase the performance of a pattern recognition task applied to the real clinical problem of tissue detection under non‐controlled illumination conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
unique发布了新的文献求助10
刚刚
刚刚
刚刚
士多忌廉完成签到 ,获得积分10
刚刚
吴中秋完成签到 ,获得积分10
1秒前
猪猪hero发布了新的文献求助30
2秒前
2秒前
半夏生姜完成签到,获得积分10
3秒前
3秒前
DT完成签到,获得积分10
4秒前
吴中秋关注了科研通微信公众号
4秒前
WY完成签到 ,获得积分10
5秒前
半夏完成签到,获得积分10
5秒前
zzzz发布了新的文献求助10
5秒前
麦冬冬完成签到,获得积分10
5秒前
星辰大海应助花花燕采纳,获得10
6秒前
6秒前
6秒前
酸奶巧克力完成签到,获得积分10
7秒前
凉薄少年应助unique采纳,获得10
7秒前
yuer完成签到,获得积分10
8秒前
hh发布了新的文献求助10
8秒前
完美世界应助yyymmma采纳,获得10
8秒前
眯眯眼的衬衫应助LR采纳,获得10
8秒前
在水一方应助LR采纳,获得10
8秒前
希望天下0贩的0应助遮宁采纳,获得10
8秒前
8秒前
利物浦996发布了新的文献求助10
8秒前
8秒前
热泪盈眶完成签到,获得积分10
9秒前
10秒前
Akim应助知行合一采纳,获得10
10秒前
Lucas应助111采纳,获得10
10秒前
10秒前
10秒前
xrang完成签到 ,获得积分10
10秒前
11秒前
黄如完成签到,获得积分10
11秒前
慕青应助安白采纳,获得10
11秒前
猪猪hero发布了新的文献求助30
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950593
求助须知:如何正确求助?哪些是违规求助? 3495971
关于积分的说明 11080135
捐赠科研通 3226361
什么是DOI,文献DOI怎么找? 1783812
邀请新用户注册赠送积分活动 867916
科研通“疑难数据库(出版商)”最低求助积分说明 800977