A hybrid learning approach to tissue recognition in wound images

人工智能 计算机科学 机器学习 范畴变量 人工神经网络 分割 感知器 模式识别(心理学) 朴素贝叶斯分类器 多层感知器 鉴定(生物学) 贝叶斯概率 支持向量机 植物 生物
作者
Francisco J. Veredas,Héctor Mesa,Laura Morente
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald (MCB UP)]
卷期号:2 (2): 327-347 被引量:10
标识
DOI:10.1108/17563780910959929
摘要

Purpose Pressure ulcer is a clinical pathology of localized damage to the skin and underlying tissue caused by pressure, shear, and friction. Diagnosis, treatment and care of pressure ulcers involve high costs for sanitary systems. Accurate wound evaluation is a critical task to optimize the efficacy of treatments and health‐care. Clinicians evaluate the pressure ulcers by visual inspection of the damaged tissues, which is an imprecise manner of assessing the wound state. Current computer vision approaches do not offer a global solution to this particular problem. The purpose of this paper is to use a hybrid learning approach based on neural and Bayesian networks to design a computational system to automatic tissue identification in wound images. Design/methodology/approach A mean shift procedure and a region‐growing strategy are implemented for effective region segmentation. Color and texture features are extracted from these segmented regions. A set of k multi‐layer perceptrons is trained with inputs consisting of color and texture patterns, and outputs consisting of categorical tissue classes determined by clinical experts. This training procedure is driven by a k ‐fold cross‐validation method. Finally, a Bayesian committee machine is formed by training a Bayesian network to combine the classifications of the k neural networks (NNs). Findings The authors outcomes show high efficiency rates from a two‐stage cascade approach to tissue identification. Giving a non‐homogeneous distribution of pattern classes, this hybrid approach has shown an additional advantage of increasing the classification efficiency when classifying patterns with relative low frequencies. Practical implications The methodology and results presented in this paper could have important implications to the field of clinical pressure ulcer evaluation and diagnosis. Originality/value The novelty associated with this work is the use of a hybrid approach consisting of NNs and Bayesian classifiers which are combined to increase the performance of a pattern recognition task applied to the real clinical problem of tissue detection under non‐controlled illumination conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tomasong发布了新的文献求助10
1秒前
cetomacrogol完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
ALRISH发布了新的文献求助10
3秒前
Amberwdd发布了新的文献求助10
4秒前
sxy发布了新的文献求助10
5秒前
失眠的科研g完成签到,获得积分10
5秒前
风趣之云完成签到 ,获得积分10
5秒前
张琴英发布了新的文献求助10
6秒前
科研通AI6.1应助michael采纳,获得10
6秒前
悲伤小鸡蛋黄完成签到,获得积分10
6秒前
orixero应助Jjjjj采纳,获得10
6秒前
陈1完成签到 ,获得积分10
7秒前
TWD发布了新的文献求助10
7秒前
CodeCraft应助杨丽佳采纳,获得10
7秒前
尊敬向雪完成签到,获得积分10
8秒前
wangmeili.发布了新的文献求助10
8秒前
朴素臻完成签到,获得积分10
9秒前
萝卜家大小姐完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
Lucas应助机智采纳,获得10
11秒前
xh完成签到 ,获得积分10
12秒前
ldroc完成签到,获得积分10
12秒前
CipherSage应助尊敬向雪采纳,获得20
12秒前
小周发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
科研小白完成签到,获得积分10
13秒前
14秒前
赘婿应助Halcyon采纳,获得10
14秒前
寒冷的鞋子完成签到 ,获得积分10
14秒前
打打应助cccc采纳,获得10
14秒前
悦耳冰蓝发布了新的文献求助10
16秒前
斯文败类应助简单访卉采纳,获得10
16秒前
此时此刻完成签到,获得积分10
17秒前
传奇3应助sxy采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784182
求助须知:如何正确求助?哪些是违规求助? 5681297
关于积分的说明 15463418
捐赠科研通 4913491
什么是DOI,文献DOI怎么找? 2644676
邀请新用户注册赠送积分活动 1592532
关于科研通互助平台的介绍 1547112