A hybrid learning approach to tissue recognition in wound images

人工智能 计算机科学 机器学习 范畴变量 人工神经网络 分割 感知器 模式识别(心理学) 朴素贝叶斯分类器 多层感知器 鉴定(生物学) 贝叶斯概率 支持向量机 植物 生物
作者
Francisco J. Veredas,Héctor Mesa,Laura Morente
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald (MCB UP)]
卷期号:2 (2): 327-347 被引量:10
标识
DOI:10.1108/17563780910959929
摘要

Purpose Pressure ulcer is a clinical pathology of localized damage to the skin and underlying tissue caused by pressure, shear, and friction. Diagnosis, treatment and care of pressure ulcers involve high costs for sanitary systems. Accurate wound evaluation is a critical task to optimize the efficacy of treatments and health‐care. Clinicians evaluate the pressure ulcers by visual inspection of the damaged tissues, which is an imprecise manner of assessing the wound state. Current computer vision approaches do not offer a global solution to this particular problem. The purpose of this paper is to use a hybrid learning approach based on neural and Bayesian networks to design a computational system to automatic tissue identification in wound images. Design/methodology/approach A mean shift procedure and a region‐growing strategy are implemented for effective region segmentation. Color and texture features are extracted from these segmented regions. A set of k multi‐layer perceptrons is trained with inputs consisting of color and texture patterns, and outputs consisting of categorical tissue classes determined by clinical experts. This training procedure is driven by a k ‐fold cross‐validation method. Finally, a Bayesian committee machine is formed by training a Bayesian network to combine the classifications of the k neural networks (NNs). Findings The authors outcomes show high efficiency rates from a two‐stage cascade approach to tissue identification. Giving a non‐homogeneous distribution of pattern classes, this hybrid approach has shown an additional advantage of increasing the classification efficiency when classifying patterns with relative low frequencies. Practical implications The methodology and results presented in this paper could have important implications to the field of clinical pressure ulcer evaluation and diagnosis. Originality/value The novelty associated with this work is the use of a hybrid approach consisting of NNs and Bayesian classifiers which are combined to increase the performance of a pattern recognition task applied to the real clinical problem of tissue detection under non‐controlled illumination conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助Akon采纳,获得20
刚刚
受伤的中蓝完成签到 ,获得积分10
1秒前
zm发布了新的文献求助10
2秒前
白菜帮子发布了新的文献求助30
3秒前
zzy完成签到,获得积分10
4秒前
4秒前
zhuzhu完成签到,获得积分10
6秒前
Leon完成签到,获得积分10
6秒前
8秒前
8秒前
动听的惋庭完成签到,获得积分10
9秒前
杨裕农发布了新的文献求助10
9秒前
小蘑菇应助JamesYang采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
细雨带风完成签到,获得积分20
10秒前
11秒前
JJ索发布了新的文献求助10
12秒前
12秒前
科研通AI2S应助果酱采纳,获得10
12秒前
Fff发布了新的文献求助10
13秒前
DARLING002发布了新的文献求助10
14秒前
lz34217完成签到 ,获得积分20
14秒前
量子星尘发布了新的文献求助10
15秒前
杨裕农完成签到,获得积分20
15秒前
清风醉完成签到,获得积分10
16秒前
17秒前
苹果发布了新的文献求助10
18秒前
Yuanyuan发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
白菜帮子完成签到,获得积分20
20秒前
22秒前
HOAN应助努力的大羊洁采纳,获得30
23秒前
雨上悲发布了新的文献求助10
23秒前
大个应助痴情的阁采纳,获得10
25秒前
chiweiyoung发布了新的文献求助10
26秒前
情怀应助盆栽采纳,获得10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729141
求助须知:如何正确求助?哪些是违规求助? 5316369
关于积分的说明 15315857
捐赠科研通 4876150
什么是DOI,文献DOI怎么找? 2619263
邀请新用户注册赠送积分活动 1568820
关于科研通互助平台的介绍 1525317