Making sense: Sensor-based investigation of clinician activities in complex critical care environments

计算机科学 工作流程 数据科学 一致性(知识库) 人机交互 人工智能 数据库
作者
Thomas George Kannampallil,Zhe Li,Min Zhang,Trevor Cohen,David Robinson,Amy Franklin,Jiajie Zhang,Vimla L. Patel
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:44 (3): 441-454 被引量:40
标识
DOI:10.1016/j.jbi.2011.02.007
摘要

In many respects, the critical care workplace resembles a paradigmatic complex system: on account of the dynamic and interactive nature of collaborative clinical work, these settings are characterized by non-linear, inter-dependent and emergent activities. Developing a comprehensive understanding of the work activities in critical care settings enables the development of streamlined work practices, better clinician workflow and most importantly, helps in the avoidance of and recovery from potential errors. Sensor-based technology provides a flexible and viable way to complement human observations by providing a mechanism to capture the nuances of certain activities with greater precision and timing. In this paper, we use sensor-based technology to capture the movement and interactions of clinicians in the Trauma Center of an Emergency Department (ED). Remarkable consistency was found between sensor data and human observations in terms of clinician locations and interactions. With this validation and greater precision with sensors, ED environment was characterized in terms of (a) the degree of randomness or entropy in the environment, (b) the movement patterns of clinicians, (c) interactions with other clinicians and finally, (d) patterns of collaborative organization with team aggregation and dispersion. Based on our results, we propose three opportunities for the use of sensor technologies in critical care settings: as a mechanism for real-time monitoring and analysis for ED activities, education and training of clinicians, and perhaps most importantly, investigating the root-causes, origins and progression of errors in the ED. Lessons learned and the challenges encountered in designing and implementing the sensor technology sensor data are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助宋宋采纳,获得10
刚刚
鱼咬羊完成签到,获得积分10
1秒前
udye发布了新的文献求助10
2秒前
3秒前
udye发布了新的文献求助10
3秒前
udye发布了新的文献求助10
3秒前
yangshu完成签到,获得积分10
3秒前
udye发布了新的文献求助10
4秒前
udye发布了新的文献求助10
4秒前
udye发布了新的文献求助10
4秒前
udye发布了新的文献求助10
4秒前
udye发布了新的文献求助10
4秒前
udye发布了新的文献求助10
4秒前
udye发布了新的文献求助10
4秒前
4秒前
思源应助23采纳,获得10
4秒前
5秒前
毛毛完成签到,获得积分10
5秒前
5秒前
张某完成签到,获得积分10
6秒前
科研醉汉完成签到,获得积分10
6秒前
清爽盼秋完成签到,获得积分10
7秒前
沉默白猫发布了新的文献求助10
7秒前
7秒前
cccc完成签到,获得积分10
7秒前
lbq完成签到,获得积分10
8秒前
wanci应助hif1a采纳,获得10
8秒前
sevenseven发布了新的文献求助10
9秒前
10秒前
科研通AI5应助胡图图采纳,获得10
10秒前
vivia发布了新的文献求助10
11秒前
丹dan发布了新的文献求助10
11秒前
11秒前
11秒前
彪壮的机器猫完成签到 ,获得积分10
11秒前
深情安青应助dio采纳,获得10
11秒前
vadfdfb完成签到,获得积分10
12秒前
13秒前
13秒前
柚子完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563859
求助须知:如何正确求助?哪些是违规求助? 3137060
关于积分的说明 9420785
捐赠科研通 2837499
什么是DOI,文献DOI怎么找? 1559874
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717187