多巴胺
神经科学
前额叶皮质
伏隔核
海马体
多巴胺能
神经化学
心理学
腹侧纹状体
纹状体
认知
作者
Daria Peleg‐Raibstein,Marie A. Pezze,Boris Ferger,W.-N. Zhang,Carol A. Murphy,Joram Feldon,Tobias Bast
出处
期刊:Neuroscience
[Elsevier]
日期:2005-01-01
卷期号:132 (1): 219-232
被引量:51
标识
DOI:10.1016/j.neuroscience.2004.12.016
摘要
Many behavioral functions—including sensorimotor, attentional, memory, and emotional processes—have been associated with hippocampal processes and with dopamine transmission in the medial prefrontal cortex (mPFC). This suggests a functional interaction between hippocampus and prefrontal dopamine. The anatomical substrate for such an interaction is the intimate interconnection between the ventral hippocampus and the dopamine innervation of the mPFC. The present study yielded direct neurochemical evidence for an interaction between ventral hippocampus and prefrontal dopamine transmission in rats by demonstrating that subconvulsive stimulation of the ventral hippocampus with N-methyl-d-aspartate (NMDA; 0.5 μg/side) activates dopamine transmission in the mPFC. Postmortem measurements revealed that bilateral NMDA stimulation of the ventral hippocampus, resulting in locomotor hyperactivity, increased the homovanillic acid/dopamine ratio, an index of dopamine transmission, in the mPFC; indices of dopamine transmission in any of five additionally examined forebrain regions (amygdala, nucleus accumbens shell/core, lateral prefrontal cortex, caudate putamen) were unaltered. In vivo microdialysis measurements in freely moving rats corroborated the suggested activation of prefrontal dopamine transmission by demonstrating that unilateral NMDA stimulation of the ventral hippocampus increased extracellular dopamine in the ipsilateral mPFC. The suggested influence of the ventral hippocampus on prefrontal dopamine may be an important mechanism for hippocampo-prefrontal interactions in normal behavioral processes. Moreover, it indicates that aberrant hippocampal activity, as found in neuropsychiatric diseases, such as schizophrenia and mood disorders, may contribute to disruption of certain cognitive and emotional functions which are extremely sensitive to imbalanced prefrontal dopamine transmission.
科研通智能强力驱动
Strongly Powered by AbleSci AI