An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints

分类 多目标优化 进化算法 数学优化 最优化问题 计算机科学 集合(抽象数据类型) 进化计算 算法 点(几何) 数学 几何学 程序设计语言
作者
Kalyanmoy Deb,Himanshu Jain
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:18 (4): 577-601 被引量:5512
标识
DOI:10.1109/tevc.2013.2281535
摘要

Having developed multiobjective optimization algorithms using evolutionary optimization methods and demonstrated their niche on various practical problems involving mostly two and three objectives, there is now a growing need for developing evolutionary multiobjective optimization (EMO) algorithms for handling many-objective (having four or more objectives) optimization problems. In this paper, we recognize a few recent efforts and discuss a number of viable directions for developing a potential EMO algorithm for solving many-objective optimization problems. Thereafter, we suggest a reference-point-based many-objective evolutionary algorithm following NSGA-II framework (we call it NSGA-III) that emphasizes population members that are nondominated, yet close to a set of supplied reference points. The proposed NSGA-III is applied to a number of many-objective test problems with three to 15 objectives and compared with two versions of a recently suggested EMO algorithm (MOEA/D). While each of the two MOEA/D methods works well on different classes of problems, the proposed NSGA-III is found to produce satisfactory results on all problems considered in this paper. This paper presents results on unconstrained problems, and the sequel paper considers constrained and other specialties in handling many-objective optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
彭于晏应助离岸采纳,获得10
刚刚
zjj发布了新的文献求助10
1秒前
rp完成签到,获得积分10
1秒前
希望天下0贩的0应助Lone采纳,获得10
1秒前
1秒前
LX发布了新的文献求助10
1秒前
erhya完成签到,获得积分10
2秒前
Lucas应助Gong采纳,获得10
2秒前
2秒前
3秒前
小蘑菇应助唠叨的富采纳,获得30
3秒前
小池同学发布了新的文献求助50
4秒前
元气糖发布了新的文献求助10
4秒前
慕青应助lx采纳,获得10
4秒前
5秒前
5秒前
复杂若男发布了新的文献求助10
5秒前
闪闪谷槐完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
英俊的铭应助854fycchjh采纳,获得30
6秒前
研友_VZG7GZ应助山人采纳,获得10
7秒前
chen完成签到,获得积分10
7秒前
汉堡包应助嘟嘟宝宝妈妈采纳,获得10
7秒前
SciGPT应助ELITOmiko采纳,获得10
8秒前
8秒前
8秒前
9秒前
liu驳回了小蘑菇应助
9秒前
9秒前
Epiphany关注了科研通微信公众号
10秒前
10秒前
ouiiiblue完成签到,获得积分10
10秒前
10秒前
孔晓龙发布了新的文献求助10
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326