医学
极限抗拉强度
腹壁
外科手术网
疝
细胞外基质
外科
生物医学工程
复合材料
生物
细胞生物学
材料科学
作者
Corey R. Deeken,Lora Melman,Eric D. Jenkins,Suellen Greco,Margaret M. Frisella,Brent D. Matthews
标识
DOI:10.1016/j.jamcollsurg.2011.01.006
摘要
Background The objective of this study was to evaluate the biomechanical characteristics and histologic remodeling of crosslinked (Peri-Guard, Permacol) and non-crosslinked (AlloDerm, Veritas) biologic meshes over a 12 month period using a porcine model of incisional hernia repair. Study Design Bilateral incisional hernias were created in 48 Yucatan minipigs and repaired after 21 days using an underlay technique. Samples were harvested at 1, 6, and 12 months and analyzed for biomechanical and histologic properties. The same biomechanical tests were conducted with de novo (time 0) meshes as well as samples of native abdominal wall. Statistical significance (p < 0.05) was determined using 1-way analysis of variance with a Fisher’s least significant difference post-test. Results All repair sites demonstrated similar tensile strengths at 1, 6, and 12 months and no significant differences were observed between mesh materials (p > 0.05 in all cases). The strength of the native porcine abdominal wall was not augmented by the presence of the mesh at any of the time points, regardless of de novo tensile strength of the mesh. Histologically, non-crosslinked materials showed earlier cell infiltration (p < 0.01), extracellular matrix deposition (p < 0.02), scaffold degradation (p < 0.05), and neovascularization (p < 0.02) compared with crosslinked materials. However, by 12 months, crosslinked materials showed similar results compared with the non-crosslinked materials for many of the features evaluated. Conclusions The tensile strengths of sites repaired with biologic mesh were not impacted by very high de novo tensile strength/stiffness or mesh-specific variables such as crosslinking. Although crosslinking distinguishes biologic meshes in the short-term for histologic features, such as cellular infiltration and neovascularization, many differences diminish during longer periods of time. Characteristics other than crosslinking, such as tissue type and processing conditions, are likely responsible for these differences.
科研通智能强力驱动
Strongly Powered by AbleSci AI