Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals

氢键 分子 超分子化学 分子间力 化学物理 形式主义(音乐) 化学 晶体工程 计算化学 纳米技术 材料科学 有机化学 艺术 音乐剧 视觉艺术
作者
Joel Bernstein,R. Davis,Liat Shimoni,Nelson Yen-Chung Chang
出处
期刊:Angewandte Chemie [Wiley]
卷期号:34 (15): 1555-1573 被引量:7730
标识
DOI:10.1002/anie.199515551
摘要

Abstract Whereas much of organic chemistry has classically dealt with the preparation and study of the properties of individual molecules, an increasingly significant portion of the activity in chemical research involves understanding and utilizing the nature of the interactions between molecules. Two representative areas of this evolution are supramolecular chemistry and molecular recognition. The interactions between molecules are governed by intermolecular forces whose energetic and geometric properties are much less well understood than those of classical chemical bonds between atoms. Among the strongest of these interactions, however, are hydrogen bonds, whose directional properties are better understood on the local level (that is, for a single hydrogen bond) than many other types of non‐bonded interactions. Nevertheless, the means by which to characterize, understand, and predict the consequences of many hydrogen bonds among molecules, and the resulting formation of molecular aggregates (on the microscopic scale) or crystals (on the macroscopic scale) has remained largely enigmatic. One of the most promising systematic approaches to resolving this enigma was initially developed by the late M. C. Etter, who applied graph theory to recognize, and then utilize, patterns of hydrogen bonding for the understanding and design of molecular crystals. In working with Etter's original ideas the power and potential utility of this approach on one hand, and on the other, the need to develop and extend the initial Etter formalism was generally recognized. It with that latter purpose that we originally undertook the present review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博ge发布了新的文献求助10
2秒前
3秒前
葶儿发布了新的文献求助10
3秒前
hgcyp完成签到,获得积分10
8秒前
ysh完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
11秒前
wang完成签到,获得积分10
12秒前
Jzhang应助Yimim采纳,获得10
13秒前
沐风发布了新的文献求助20
14秒前
汉关发布了新的文献求助10
16秒前
16秒前
葶儿完成签到,获得积分10
16秒前
安详中蓝完成签到 ,获得积分10
17秒前
呆萌士晋发布了新的文献求助10
17秒前
17秒前
19秒前
呆头发布了新的文献求助10
21秒前
若水发布了新的文献求助200
22秒前
22秒前
23秒前
子川发布了新的文献求助10
23秒前
大头娃娃没下巴完成签到,获得积分10
25秒前
liyuchen完成签到,获得积分10
25秒前
CipherSage应助Lxxx_7采纳,获得10
26秒前
烟花应助永远少年采纳,获得10
26秒前
meng发布了新的文献求助10
28秒前
科研通AI5应助贪吃的猴子采纳,获得10
30秒前
30秒前
可爱的彩虹完成签到,获得积分10
30秒前
小确幸完成签到,获得积分10
30秒前
彭于晏应助毛毛虫采纳,获得10
31秒前
LilyChen完成签到 ,获得积分10
31秒前
Owen应助Su采纳,获得10
31秒前
31秒前
31秒前
32秒前
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824