Identification of direct residue contacts in protein–protein interaction by message passing

计算生物学 推论 蛋白质-蛋白质相互作用 协方差 基因组 生物 背景(考古学) 计算机科学 遗传学 人工智能 数学 基因 统计 古生物学
作者
Martin Weigt,Robert A. White,Hendrik Szurmant,James A. Hoch,Terence Hwa
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:106 (1): 67-72 被引量:1003
标识
DOI:10.1073/pnas.0805923106
摘要

Understanding the molecular determinants of specificity in protein–protein interaction is an outstanding challenge of postgenome biology. The availability of large protein databases generated from sequences of hundreds of bacterial genomes enables various statistical approaches to this problem. In this context covariance-based methods have been used to identify correlation between amino acid positions in interacting proteins. However, these methods have an important shortcoming, in that they cannot distinguish between directly and indirectly correlated residues. We developed a method that combines covariance analysis with global inference analysis, adopted from use in statistical physics. Applied to a set of >2,500 representatives of the bacterial two-component signal transduction system, the combination of covariance with global inference successfully and robustly identified residue pairs that are proximal in space without resorting to ad hoc tuning parameters, both for heterointeractions between sensor kinase (SK) and response regulator (RR) proteins and for homointeractions between RR proteins. The spectacular success of this approach illustrates the effectiveness of the global inference approach in identifying direct interaction based on sequence information alone. We expect this method to be applicable soon to interaction surfaces between proteins present in only 1 copy per genome as the number of sequenced genomes continues to expand. Use of this method could significantly increase the potential targets for therapeutic intervention, shed light on the mechanism of protein–protein interaction, and establish the foundation for the accurate prediction of interacting protein partners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Deadman完成签到,获得积分10
刚刚
Ruyii完成签到,获得积分10
1秒前
2秒前
4秒前
活泼蜡烛发布了新的文献求助10
4秒前
4秒前
科研小白发布了新的文献求助10
5秒前
憨憨发布了新的文献求助10
5秒前
MOJIN发布了新的文献求助10
6秒前
ZDY完成签到,获得积分10
6秒前
7秒前
Chelry发布了新的文献求助10
7秒前
路敏完成签到,获得积分10
8秒前
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
ED应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
谦让含玉发布了新的文献求助20
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得30
9秒前
turquoise应助科研通管家采纳,获得10
9秒前
Jiang应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
dongjy应助科研通管家采纳,获得20
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
SYLH应助科研通管家采纳,获得20
10秒前
10秒前
机灵曼青完成签到 ,获得积分10
10秒前
英姑应助科研通管家采纳,获得30
10秒前
无奈行恶应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
峥2发布了新的文献求助10
10秒前
斯文败类应助科研通管家采纳,获得80
10秒前
英姑应助科研通管家采纳,获得10
10秒前
10秒前
英姑应助科研通管家采纳,获得40
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452