Identification of direct residue contacts in protein–protein interaction by message passing

计算生物学 推论 蛋白质-蛋白质相互作用 协方差 基因组 生物 背景(考古学) 计算机科学 遗传学 人工智能 数学 基因 统计 古生物学
作者
Martin Weigt,Robert A. White,Hendrik Szurmant,James A. Hoch,Terence Hwa
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:106 (1): 67-72 被引量:1003
标识
DOI:10.1073/pnas.0805923106
摘要

Understanding the molecular determinants of specificity in protein–protein interaction is an outstanding challenge of postgenome biology. The availability of large protein databases generated from sequences of hundreds of bacterial genomes enables various statistical approaches to this problem. In this context covariance-based methods have been used to identify correlation between amino acid positions in interacting proteins. However, these methods have an important shortcoming, in that they cannot distinguish between directly and indirectly correlated residues. We developed a method that combines covariance analysis with global inference analysis, adopted from use in statistical physics. Applied to a set of >2,500 representatives of the bacterial two-component signal transduction system, the combination of covariance with global inference successfully and robustly identified residue pairs that are proximal in space without resorting to ad hoc tuning parameters, both for heterointeractions between sensor kinase (SK) and response regulator (RR) proteins and for homointeractions between RR proteins. The spectacular success of this approach illustrates the effectiveness of the global inference approach in identifying direct interaction based on sequence information alone. We expect this method to be applicable soon to interaction surfaces between proteins present in only 1 copy per genome as the number of sequenced genomes continues to expand. Use of this method could significantly increase the potential targets for therapeutic intervention, shed light on the mechanism of protein–protein interaction, and establish the foundation for the accurate prediction of interacting protein partners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NPC-CBI完成签到,获得积分10
1秒前
冲冲超人完成签到,获得积分20
1秒前
搜集达人应助Sweet Hope采纳,获得10
1秒前
2秒前
单纯的尔阳关注了科研通微信公众号
3秒前
3秒前
小小明天完成签到 ,获得积分10
3秒前
整齐南莲发布了新的文献求助10
3秒前
HonglinGao发布了新的文献求助10
3秒前
禹代秋发布了新的文献求助10
4秒前
乐乐应助shen采纳,获得10
4秒前
4秒前
香蕉觅云应助时尚的凡白采纳,获得10
4秒前
Wayne应助小店不打杨采纳,获得10
5秒前
斯文败类应助keyan采纳,获得10
5秒前
海豚发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
可靠盼旋完成签到,获得积分10
7秒前
chen发布了新的文献求助10
8秒前
you完成签到 ,获得积分10
8秒前
可乐发布了新的文献求助10
8秒前
8秒前
才怪发布了新的文献求助10
9秒前
Hello应助妍妍采纳,获得10
9秒前
天天天蓝完成签到,获得积分10
10秒前
稳重初翠完成签到,获得积分20
10秒前
迅速的八宝粥完成签到 ,获得积分10
10秒前
10秒前
菠菜菜str发布了新的文献求助10
11秒前
11秒前
勤恳立轩发布了新的文献求助200
12秒前
NexusExplorer应助HonglinGao采纳,获得10
12秒前
在水一方应助xxxxxliang采纳,获得10
13秒前
坦率抽屉完成签到 ,获得积分10
14秒前
白椋完成签到,获得积分10
15秒前
jialiu发布了新的文献求助10
15秒前
才怪完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155565
求助须知:如何正确求助?哪些是违规求助? 2806679
关于积分的说明 7870461
捐赠科研通 2465012
什么是DOI,文献DOI怎么找? 1312079
科研通“疑难数据库(出版商)”最低求助积分说明 629860
版权声明 601892