Identification of direct residue contacts in protein–protein interaction by message passing

计算生物学 推论 蛋白质-蛋白质相互作用 协方差 基因组 生物 背景(考古学) 计算机科学 遗传学 人工智能 数学 基因 统计 古生物学
作者
Martin Weigt,Robert A. White,Hendrik Szurmant,James A. Hoch,Terence Hwa
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:106 (1): 67-72 被引量:1003
标识
DOI:10.1073/pnas.0805923106
摘要

Understanding the molecular determinants of specificity in protein–protein interaction is an outstanding challenge of postgenome biology. The availability of large protein databases generated from sequences of hundreds of bacterial genomes enables various statistical approaches to this problem. In this context covariance-based methods have been used to identify correlation between amino acid positions in interacting proteins. However, these methods have an important shortcoming, in that they cannot distinguish between directly and indirectly correlated residues. We developed a method that combines covariance analysis with global inference analysis, adopted from use in statistical physics. Applied to a set of >2,500 representatives of the bacterial two-component signal transduction system, the combination of covariance with global inference successfully and robustly identified residue pairs that are proximal in space without resorting to ad hoc tuning parameters, both for heterointeractions between sensor kinase (SK) and response regulator (RR) proteins and for homointeractions between RR proteins. The spectacular success of this approach illustrates the effectiveness of the global inference approach in identifying direct interaction based on sequence information alone. We expect this method to be applicable soon to interaction surfaces between proteins present in only 1 copy per genome as the number of sequenced genomes continues to expand. Use of this method could significantly increase the potential targets for therapeutic intervention, shed light on the mechanism of protein–protein interaction, and establish the foundation for the accurate prediction of interacting protein partners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助TT采纳,获得10
1秒前
kid1912发布了新的文献求助50
1秒前
孙淳发布了新的文献求助10
5秒前
6秒前
6秒前
伯赏诗霜发布了新的文献求助10
6秒前
7秒前
7秒前
程哲瀚完成签到,获得积分10
7秒前
Brennan完成签到,获得积分10
8秒前
9秒前
9秒前
笨笨善若发布了新的文献求助10
10秒前
10秒前
11秒前
樘樘完成签到,获得积分10
11秒前
一个有点长的序完成签到 ,获得积分10
12秒前
孙淳完成签到,获得积分10
13秒前
13秒前
YYJ25发布了新的文献求助10
14秒前
Jzhang应助tmpstlml采纳,获得10
15秒前
微笑的南露完成签到 ,获得积分10
15秒前
豌豆关注了科研通微信公众号
15秒前
18秒前
笨笨善若完成签到,获得积分10
20秒前
hs完成签到,获得积分20
20秒前
ZHANGMANLI0422完成签到,获得积分10
20秒前
susu关注了科研通微信公众号
22秒前
DYuH23完成签到,获得积分10
23秒前
24秒前
爱静静应助DHL采纳,获得10
24秒前
24秒前
sunny661104完成签到 ,获得积分10
25秒前
简单完成签到 ,获得积分10
25秒前
尘林发布了新的文献求助10
25秒前
Z-先森完成签到,获得积分0
26秒前
苏源智发布了新的文献求助10
26秒前
伯赏诗霜完成签到,获得积分10
27秒前
NN应助LIn采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849