Identification of direct residue contacts in protein–protein interaction by message passing

计算生物学 推论 蛋白质-蛋白质相互作用 协方差 基因组 生物 背景(考古学) 计算机科学 遗传学 人工智能 数学 基因 古生物学 统计
作者
Martin Weigt,Robert A. White,Hendrik Szurmant,James A. Hoch,Terence Hwa
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:106 (1): 67-72 被引量:1003
标识
DOI:10.1073/pnas.0805923106
摘要

Understanding the molecular determinants of specificity in protein–protein interaction is an outstanding challenge of postgenome biology. The availability of large protein databases generated from sequences of hundreds of bacterial genomes enables various statistical approaches to this problem. In this context covariance-based methods have been used to identify correlation between amino acid positions in interacting proteins. However, these methods have an important shortcoming, in that they cannot distinguish between directly and indirectly correlated residues. We developed a method that combines covariance analysis with global inference analysis, adopted from use in statistical physics. Applied to a set of >2,500 representatives of the bacterial two-component signal transduction system, the combination of covariance with global inference successfully and robustly identified residue pairs that are proximal in space without resorting to ad hoc tuning parameters, both for heterointeractions between sensor kinase (SK) and response regulator (RR) proteins and for homointeractions between RR proteins. The spectacular success of this approach illustrates the effectiveness of the global inference approach in identifying direct interaction based on sequence information alone. We expect this method to be applicable soon to interaction surfaces between proteins present in only 1 copy per genome as the number of sequenced genomes continues to expand. Use of this method could significantly increase the potential targets for therapeutic intervention, shed light on the mechanism of protein–protein interaction, and establish the foundation for the accurate prediction of interacting protein partners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绵羊座鸭梨完成签到 ,获得积分10
2秒前
2秒前
2秒前
一一发布了新的文献求助10
3秒前
杜客发布了新的文献求助10
3秒前
wop111发布了新的文献求助10
3秒前
wr完成签到,获得积分10
3秒前
4秒前
酷波er应助cheers采纳,获得10
4秒前
Orange应助Song采纳,获得10
6秒前
XKXXYT发布了新的文献求助10
6秒前
无奈茹妖完成签到 ,获得积分10
6秒前
科目三应助科研通管家采纳,获得10
7秒前
小龙人发布了新的文献求助10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
华国锋应助陶醉的平萱采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
zjq发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
DD发布了新的文献求助10
12秒前
dingdign发布了新的文献求助10
13秒前
13秒前
人问发布了新的文献求助10
14秒前
走走发布了新的文献求助10
15秒前
感动冰淇淋完成签到,获得积分10
16秒前
小米呀发布了新的文献求助10
16秒前
sxmt123456789发布了新的文献求助10
16秒前
难过的谷芹应助一一采纳,获得10
18秒前
第一百零一首诗完成签到,获得积分10
19秒前
20秒前
打打应助大方煎蛋采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124283
求助须知:如何正确求助?哪些是违规求助? 4328544
关于积分的说明 13487638
捐赠科研通 4162942
什么是DOI,文献DOI怎么找? 2281981
邀请新用户注册赠送积分活动 1283241
关于科研通互助平台的介绍 1222434