Automated Ice–Water Classification Using Dual Polarization SAR Satellite Imagery

支持向量机 合成孔径雷达 遥感 计算机科学 人工智能 海冰 像素 地质学 计算机视觉 模式识别(心理学) 海洋学
作者
Steven Leigh,Zhijie Wang,David A. Clausi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:52 (9): 5529-5539 被引量:159
标识
DOI:10.1109/tgrs.2013.2290231
摘要

Mapping ice and open water in ocean bodies is important for numerous purposes, including environmental analysis and ship navigation. The Canadian Ice Service (CIS) has stipulated a need for an automated ice-water discrimination algorithm using dual polarization images produced by RADARSAT-2. Automated methods can provide mappings in larger volumes, with more consistency, and in finer resolutions, which are otherwise impractical to generate. We have developed such an automated ice-water discrimination system called MAp-Guided Ice Classification. First, the HV (horizontal transmit polarization, vertical receive polarization) scene is classified using the “glocal” method, i.e., a hierarchical region-based classification method based on the published iterative region growing using semantics (IRGS) algorithm. Second, a pixel-based support vector machine (SVM) using a nonlinear radial basis function kernel classification is performed exploiting synthetic aperture radar gray-level cooccurrence texture and backscatter features. Finally, the IRGS and SVM classification results are combined using the IRGS approach but with a modified energy function to accommodate the SVM pixel-based information. The combined classifier was tested on 20 ground truthed dual polarization RADARSAT-2 scenes of the Beaufort Sea containing a variety of ice types and water patterns across melt, summer, and freeze-up periods. The average leave-one-out classification accuracy with respect to these ground truths is 96.42%, with a minimum of 89.95% for one scene. The MAGIC system is now under consideration by the CIS for operational use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助cccr02采纳,获得10
刚刚
chaning发布了新的文献求助10
刚刚
东西南北完成签到,获得积分10
2秒前
66完成签到,获得积分10
4秒前
整齐尔容发布了新的文献求助10
6秒前
打打应助wangqiqi采纳,获得10
9秒前
14秒前
婷婷大侠完成签到,获得积分10
14秒前
15秒前
17秒前
18秒前
尛森完成签到,获得积分10
18秒前
枫尽完成签到,获得积分10
20秒前
Owen应助易安采纳,获得10
20秒前
123123发布了新的文献求助10
20秒前
小景007完成签到,获得积分10
21秒前
小米完成签到,获得积分10
22秒前
顾君如完成签到 ,获得积分10
23秒前
苞米公主发布了新的文献求助10
23秒前
科研通AI2S应助不知道采纳,获得30
23秒前
23秒前
研友_VZG7GZ应助圆潘采纳,获得10
24秒前
冷艳薯片发布了新的文献求助10
28秒前
中书完成签到,获得积分10
28秒前
30秒前
赘婿应助123123采纳,获得10
30秒前
阳光海云发布了新的文献求助30
31秒前
YEEze发布了新的文献求助10
31秒前
31秒前
asd发布了新的文献求助10
31秒前
32秒前
Ava应助淡淡菠萝采纳,获得10
34秒前
不知道发布了新的文献求助30
35秒前
幽默微笑发布了新的文献求助10
36秒前
37秒前
小蘑菇应助H-China采纳,获得10
38秒前
北过完成签到,获得积分10
39秒前
阳光总在风雨后完成签到,获得积分10
39秒前
41秒前
42秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140679
求助须知:如何正确求助?哪些是违规求助? 2791473
关于积分的说明 7799108
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302064
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194