Automated Ice–Water Classification Using Dual Polarization SAR Satellite Imagery

支持向量机 合成孔径雷达 遥感 计算机科学 人工智能 海冰 像素 地质学 计算机视觉 模式识别(心理学) 海洋学
作者
Steven Leigh,Zhijie Wang,David A. Clausi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:52 (9): 5529-5539 被引量:159
标识
DOI:10.1109/tgrs.2013.2290231
摘要

Mapping ice and open water in ocean bodies is important for numerous purposes, including environmental analysis and ship navigation. The Canadian Ice Service (CIS) has stipulated a need for an automated ice-water discrimination algorithm using dual polarization images produced by RADARSAT-2. Automated methods can provide mappings in larger volumes, with more consistency, and in finer resolutions, which are otherwise impractical to generate. We have developed such an automated ice-water discrimination system called MAp-Guided Ice Classification. First, the HV (horizontal transmit polarization, vertical receive polarization) scene is classified using the “glocal” method, i.e., a hierarchical region-based classification method based on the published iterative region growing using semantics (IRGS) algorithm. Second, a pixel-based support vector machine (SVM) using a nonlinear radial basis function kernel classification is performed exploiting synthetic aperture radar gray-level cooccurrence texture and backscatter features. Finally, the IRGS and SVM classification results are combined using the IRGS approach but with a modified energy function to accommodate the SVM pixel-based information. The combined classifier was tested on 20 ground truthed dual polarization RADARSAT-2 scenes of the Beaufort Sea containing a variety of ice types and water patterns across melt, summer, and freeze-up periods. The average leave-one-out classification accuracy with respect to these ground truths is 96.42%, with a minimum of 89.95% for one scene. The MAGIC system is now under consideration by the CIS for operational use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
四喜格格完成签到,获得积分10
1秒前
科研通AI5应助Laus采纳,获得10
1秒前
Godspeed发布了新的文献求助10
2秒前
悦耳的乐松完成签到,获得积分10
3秒前
星星泡饭发布了新的文献求助10
3秒前
着急的语儿完成签到,获得积分10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得30
3秒前
差劲先森完成签到 ,获得积分10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
科目三应助goodgoodstudy采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
Wu发布了新的文献求助10
4秒前
4秒前
lemon应助科研通管家采纳,获得20
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
打打应助聪聪great采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
5秒前
无名完成签到,获得积分10
5秒前
打打应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得40
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
只A不B应助科研通管家采纳,获得30
5秒前
5秒前
SYanan完成签到 ,获得积分10
6秒前
Owen应助大方嵩采纳,获得10
6秒前
7秒前
7秒前
7秒前
耍酷花卷发布了新的文献求助10
7秒前
孟陬十一完成签到,获得积分10
8秒前
8秒前
搞怪的凡蕾完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762