Automated Ice–Water Classification Using Dual Polarization SAR Satellite Imagery

支持向量机 合成孔径雷达 遥感 计算机科学 人工智能 海冰 像素 地质学 计算机视觉 模式识别(心理学) 海洋学
作者
Steven Leigh,Zhijie Wang,David A. Clausi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:52 (9): 5529-5539 被引量:159
标识
DOI:10.1109/tgrs.2013.2290231
摘要

Mapping ice and open water in ocean bodies is important for numerous purposes, including environmental analysis and ship navigation. The Canadian Ice Service (CIS) has stipulated a need for an automated ice-water discrimination algorithm using dual polarization images produced by RADARSAT-2. Automated methods can provide mappings in larger volumes, with more consistency, and in finer resolutions, which are otherwise impractical to generate. We have developed such an automated ice-water discrimination system called MAp-Guided Ice Classification. First, the HV (horizontal transmit polarization, vertical receive polarization) scene is classified using the “glocal” method, i.e., a hierarchical region-based classification method based on the published iterative region growing using semantics (IRGS) algorithm. Second, a pixel-based support vector machine (SVM) using a nonlinear radial basis function kernel classification is performed exploiting synthetic aperture radar gray-level cooccurrence texture and backscatter features. Finally, the IRGS and SVM classification results are combined using the IRGS approach but with a modified energy function to accommodate the SVM pixel-based information. The combined classifier was tested on 20 ground truthed dual polarization RADARSAT-2 scenes of the Beaufort Sea containing a variety of ice types and water patterns across melt, summer, and freeze-up periods. The average leave-one-out classification accuracy with respect to these ground truths is 96.42%, with a minimum of 89.95% for one scene. The MAGIC system is now under consideration by the CIS for operational use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EJSA发布了新的文献求助10
1秒前
CodeCraft应助雪雪采纳,获得10
2秒前
秋沧海完成签到,获得积分10
2秒前
2秒前
牛马发布了新的文献求助10
3秒前
3秒前
Lucas应助pjson15376449841采纳,获得10
3秒前
nenoaowu发布了新的文献求助10
4秒前
英俊的铭应助xiuxiu125采纳,获得10
4秒前
企鹅不耐热完成签到 ,获得积分10
5秒前
成就雨筠发布了新的文献求助10
5秒前
猪丢了完成签到 ,获得积分10
5秒前
瀚辰完成签到,获得积分10
5秒前
Orange应助cangmingzi采纳,获得10
7秒前
7秒前
希望天下0贩的0应助DRDOC采纳,获得10
8秒前
海波完成签到,获得积分10
8秒前
YMM完成签到,获得积分10
8秒前
orixero应助如意小熊猫采纳,获得10
8秒前
曾云璐发布了新的文献求助10
8秒前
momo123完成签到 ,获得积分10
8秒前
9秒前
lgy发布了新的文献求助10
10秒前
10秒前
17764715645完成签到,获得积分10
10秒前
xinyang完成签到,获得积分10
10秒前
后撤步7777完成签到,获得积分10
10秒前
充电宝应助zz采纳,获得10
10秒前
刻苦大门完成签到 ,获得积分10
10秒前
明理青丝完成签到 ,获得积分10
12秒前
陈嘟嘟发布了新的文献求助10
12秒前
英俊的铭应助失眠无声采纳,获得10
13秒前
13秒前
铁头霸霸发布了新的文献求助10
13秒前
凡华完成签到,获得积分10
13秒前
ceeray23发布了新的文献求助20
14秒前
HHZ完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252465
求助须知:如何正确求助?哪些是违规求助? 4416187
关于积分的说明 13748934
捐赠科研通 4288199
什么是DOI,文献DOI怎么找? 2352788
邀请新用户注册赠送积分活动 1349608
关于科研通互助平台的介绍 1309131