Positive matrix factorization: A non‐negative factor model with optimal utilization of error estimates of data values

主成分分析 基质(化学分析) 数学 规范(哲学) 矩阵分解 因子分析 因式分解 统计 应用数学 组合数学 算法 物理 化学 量子力学 特征向量 色谱法 政治学 法学
作者
Pentti Paatero,Unto Tapper
出处
期刊:Environmetrics [Wiley]
卷期号:5 (2): 111-126 被引量:4693
标识
DOI:10.1002/env.3170050203
摘要

Abstract A new variant ‘PMF’ of factor analysis is described. It is assumed that X is a matrix of observed data and σ is the known matrix of standard deviations of elements of X . Both X and σ are of dimensions n × m . The method solves the bilinear matrix problem X = GF + E where G is the unknown left hand factor matrix (scores) of dimensions n × p , F is the unknown right hand factor matrix (loadings) of dimensions p × m , and E is the matrix of residuals. The problem is solved in the weighted least squares sense: G and F are determined so that the Frobenius norm of E divided (element‐by‐element) by σ is minimized. Furthermore, the solution is constrained so that all the elements of G and F are required to be non‐negative. It is shown that the solutions by PMF are usually different from any solutions produced by the customary factor analysis (FA, i.e. principal component analysis (PCA) followed by rotations). Usually PMF produces a better fit to the data than FA. Also, the result of PF is guaranteed to be non‐negative, while the result of FA often cannot be rotated so that all negative entries would be eliminated. Different possible application areas of the new method are briefly discussed. In environmental data, the error estimates of data can be widely varying and non‐negativity is often an essential feature of the underlying models. Thus it is concluded that PMF is better suited than FA or PCA in many environmental applications. Examples of successful applications of PMF are shown in companion papers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郁金香完成签到,获得积分10
刚刚
刚刚
beaubeau田发布了新的文献求助10
1秒前
Lucas应助郭桑采纳,获得10
1秒前
菠菜发布了新的文献求助50
1秒前
2秒前
jj发布了新的文献求助10
2秒前
兴奋硬币完成签到,获得积分10
2秒前
饱满初南完成签到,获得积分10
2秒前
打打应助NANA采纳,获得10
2秒前
123发布了新的文献求助30
3秒前
音悦台完成签到,获得积分10
3秒前
4秒前
江峰发布了新的文献求助10
4秒前
5秒前
5秒前
开放沛柔发布了新的文献求助10
5秒前
xwl发布了新的文献求助10
5秒前
婧婧婧发布了新的文献求助10
6秒前
炸毛可乐完成签到,获得积分10
7秒前
7秒前
木南南发布了新的文献求助10
7秒前
无奈的玲关注了科研通微信公众号
8秒前
9秒前
叨叨哥关注了科研通微信公众号
9秒前
江峰完成签到,获得积分10
10秒前
晓峰完成签到,获得积分10
10秒前
高挑的雅山完成签到,获得积分20
10秒前
11秒前
领导范儿应助kk采纳,获得10
11秒前
fLuenC完成签到,获得积分10
11秒前
11秒前
1GE完成签到,获得积分10
12秒前
端庄的皮卡丘完成签到,获得积分10
12秒前
12秒前
jj完成签到,获得积分20
12秒前
萌~Lucky完成签到,获得积分10
13秒前
13秒前
Orange应助缥缈的青旋采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Conference Record, IAS Annual Meeting 1977 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539638
求助须知:如何正确求助?哪些是违规求助? 3117385
关于积分的说明 9330173
捐赠科研通 2815010
什么是DOI,文献DOI怎么找? 1547383
邀请新用户注册赠送积分活动 720908
科研通“疑难数据库(出版商)”最低求助积分说明 712354