Positive matrix factorization: A non‐negative factor model with optimal utilization of error estimates of data values

主成分分析 基质(化学分析) 数学 规范(哲学) 矩阵分解 因子分析 因式分解 统计 应用数学 组合数学 算法 物理 化学 量子力学 特征向量 色谱法 政治学 法学
作者
Pentti Paatero,Unto Tapper
出处
期刊:Environmetrics [Wiley]
卷期号:5 (2): 111-126 被引量:6053
标识
DOI:10.1002/env.3170050203
摘要

Abstract A new variant ‘PMF’ of factor analysis is described. It is assumed that X is a matrix of observed data and σ is the known matrix of standard deviations of elements of X . Both X and σ are of dimensions n × m . The method solves the bilinear matrix problem X = GF + E where G is the unknown left hand factor matrix (scores) of dimensions n × p , F is the unknown right hand factor matrix (loadings) of dimensions p × m , and E is the matrix of residuals. The problem is solved in the weighted least squares sense: G and F are determined so that the Frobenius norm of E divided (element‐by‐element) by σ is minimized. Furthermore, the solution is constrained so that all the elements of G and F are required to be non‐negative. It is shown that the solutions by PMF are usually different from any solutions produced by the customary factor analysis (FA, i.e. principal component analysis (PCA) followed by rotations). Usually PMF produces a better fit to the data than FA. Also, the result of PF is guaranteed to be non‐negative, while the result of FA often cannot be rotated so that all negative entries would be eliminated. Different possible application areas of the new method are briefly discussed. In environmental data, the error estimates of data can be widely varying and non‐negativity is often an essential feature of the underlying models. Thus it is concluded that PMF is better suited than FA or PCA in many environmental applications. Examples of successful applications of PMF are shown in companion papers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助机智跳跳糖采纳,获得10
刚刚
LCC发布了新的文献求助10
刚刚
hhllhh发布了新的文献求助10
1秒前
1秒前
1秒前
Zyw关注了科研通微信公众号
2秒前
3秒前
微光熠发布了新的文献求助10
3秒前
称心的水蓉完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
nature榜上发布了新的文献求助10
3秒前
Owen应助人类不宜搞科研采纳,获得10
3秒前
ww完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
于瑜与余发布了新的文献求助10
6秒前
6秒前
元谷雪发布了新的文献求助10
6秒前
7秒前
8秒前
自然听兰发布了新的文献求助10
8秒前
Jerryis发布了新的文献求助10
9秒前
10秒前
共享精神应助李耀京采纳,获得30
10秒前
10秒前
黄诗淇完成签到,获得积分10
11秒前
11秒前
123456发布了新的文献求助10
11秒前
11秒前
漱泉枕石发布了新的文献求助10
12秒前
12秒前
Lucas应助俊逸的三毒采纳,获得10
12秒前
有风的地方完成签到 ,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
CodeCraft应助YY再摆烂采纳,获得10
14秒前
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277