清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Spectral matching in Hyperion images for improved characterization of Mangrove ecosystems in southern India

高光谱成像 红树林 红树林生态系统 匹配(统计) 遥感 度量(数据仓库) 模式识别(心理学) 计算机科学 人工智能 数学 地理 生态学 数据挖掘 统计 生物
作者
S. Padma,S. Sanjeevi
出处
期刊:Proceedings of SPIE 卷期号:9263: 926317-926317
标识
DOI:10.1117/12.2068938
摘要

Mangrove ecosystem study is one of the main beneficiaries of the application of hyperspectral data and spectral matching techniques. Diversity and density of mangrove species leads to complexity of the ecosystem. Hence, species level mapping becomes difficult. Though hyperspectral images are appropriate for such a mapping, different mangrove species with closely matching spectra pose a challenge. This paper proposes a novel hyperspectral matching algorithm by integrating the stochastic Jeffries-Matusita measure (JM) and deterministic Spectral Angle Mapper (SAM) to accurately map most species of the mangrove ecosystem. The JM-SAM algorithm signifies the combination of an quantitative angle measure (SAM) and an qualitative distance measure (JM). The spectral capabilities of both the measures are orthogonally projected using tangent and sine functions to result in the combined algorithm. The developed JM-SAM algorithm is implemented to discriminate the mangrove species and the landcover classes of Pichavaram and Muthupet mangrove forests of southern India using the Hyperion datasets. The developed algorithm is extended in a supervised framework for improved classification of the Hyperion image. The reference spectra of the mangrove species and other cover types are extracted from the Hyperion image. From the values of relative spectral discriminatory probability and relative discriminatory entropy value, it can be inferred that hybrid JM-SAM matching measure results in improved discriminability than the individual SAM and JM algorithms. This performance is reflected in the classification results where the JM-SAM (TAN) and JM-SAM (SIN) matching algorithms yielded an improved accuracy of (86.25%,85%) and (88.10%, 86.96) for both the study sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助可靠的雁荷采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
紫熊发布了新的文献求助10
11秒前
23秒前
量子星尘发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
47秒前
59秒前
量子星尘发布了新的文献求助10
1分钟前
紫熊发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
紫熊完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
hhh2018687完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
clairevox完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
传奇3应助clairevox采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助30
2分钟前
隐形大白完成签到 ,获得积分10
2分钟前
2分钟前
sxx发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
小美酱完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
poki完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661079
求助须知:如何正确求助?哪些是违规求助? 3222214
关于积分的说明 9744081
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538