计算机科学
噪音(视频)
剪裁(形态学)
点式的
高斯噪声
像素
高斯分布
算法
人工智能
图像(数学)
计算机视觉
数学
数学分析
哲学
语言学
物理
量子力学
作者
Alessandro Foi,Mejdi Trimeche,Vladimir Katkovnik,Karen Egiazarian
标识
DOI:10.1109/tip.2008.2001399
摘要
We present a simple and usable noise model for the raw-data of digital imaging sensors. This signal-dependent noise model, which gives the pointwise standard-deviation of the noise as a function of the expectation of the pixel raw-data output, is composed of a Poissonian part, modeling the photon sensing, and Gaussian part, for the remaining stationary disturbances in the output data. We further explicitly take into account the clipping of the data (over- and under-exposure), faithfully reproducing the nonlinear response of the sensor. We propose an algorithm for the fully automatic estimation of the model parameters given a single noisy image. Experiments with synthetic images and with real raw-data from various sensors prove the practical applicability of the method and the accuracy of the proposed model.
科研通智能强力驱动
Strongly Powered by AbleSci AI