清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Brain processing of capsaicin-induced secondary hyperalgesia

卡斯普 计算机科学 卷积神经网络 蛋白质结构预测 人工智能 蛋白质结构 计算生物学 化学 生物 生物化学
作者
Ralf Baron,Yvonne Baron,Elizabeth A. Disbrow,Timothy P. L. Roberts
出处
期刊:Neurology [Ovid Technologies (Wolters Kluwer)]
卷期号:53 (3): 548-548 被引量:185
标识
DOI:10.1212/wnl.53.3.548
摘要

Abstract

The topology of protein folds can be specified by the inter-residue contact-maps and accurate contact-map prediction can help ab initio structure folding. We developed TripletRes to deduce protein contact-maps from discretized distance profiles by end-to-end training of deep residual neural-networks. Compared to previous approaches, the major advantage of TripletRes is in its ability to learn and directly fuse a triplet of coevolutionary matrices extracted from the whole-genome and metagenome databases and therefore minimize the information loss during the course of contact model training. TripletRes was tested on a large set of 245 non-homologous proteins from CASP and CAMEO experiments, and outperformed other state-of-the-art methods by at least 58.4% for the CASP 11&12 and 44.4% for the CAMEO targets in the top-L long-range contact precision. On the 31 FM targets from the latest CASP13 challenge, TripletRes achieved the highest precision (71.6%) for the top-L/5 long-range contact predictions. These results demonstrate a novel efficient approach to extend the power of deep convolutional networks for high-accuracy medium- and long-range protein contact-map predictions starting from primary sequences, which are critical for constructing 3D structure of proteins that lack homologous templates in the PDB library.

Availability

The training and testing data, standalone package, and the online server for TripletRes are available at https://zhanglab.ccmb.med.umich.edu/TripletRes/.

Author Summary

Ab initio protein folding has been a major unsolved problem in computational biology for more than half a century. Recent community-wide Critical Assessment of Structure Prediction (CASP) experiments have witnessed exciting progress on ab initio structure prediction, which was mainly powered by the boosting of contact-map prediction as the latter can be used as constraints to guide ab initio folding simulations. In this work, we proposed a new open-source deep-learning architecture, TripletRes, built on the residual convolutional neural networks for high-accuracy contact prediction. The large-scale benchmark and blind test results demonstrate significant advancement of the proposed methods over other approaches in predicting medium- and long-range contact-maps that are critical for guiding protein folding simulations. Detailed data analyses showed that the major advantage of TripletRes lies in the unique protocol to fuse multiple evolutionary feature matrices which are directly extracted from whole-genome and metagenome databases and therefore minimize the information loss during the contact model training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助Marshall采纳,获得10
30秒前
39秒前
Marshall发布了新的文献求助10
45秒前
锦鲤完成签到,获得积分10
52秒前
科研通AI6.1应助twk采纳,获得10
1分钟前
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
NattyPoe应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
卓天宇完成签到,获得积分0
2分钟前
量子星尘发布了新的文献求助50
2分钟前
2分钟前
小李老博完成签到,获得积分10
2分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
NattyPoe应助科研通管家采纳,获得10
3分钟前
3分钟前
两个榴莲完成签到,获得积分0
4分钟前
4分钟前
魏猛完成签到,获得积分10
5分钟前
ilihe应助dd采纳,获得10
5分钟前
简单发布了新的文献求助20
5分钟前
dd完成签到,获得积分10
6分钟前
简单发布了新的文献求助20
6分钟前
开心每一天完成签到 ,获得积分10
6分钟前
无极微光应助简单采纳,获得20
7分钟前
7分钟前
Mio发布了新的文献求助10
7分钟前
顾矜应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
乐乐应助科研通管家采纳,获得10
7分钟前
三日发布了新的文献求助10
7分钟前
范白容完成签到 ,获得积分0
8分钟前
栀鸢完成签到,获得积分20
8分钟前
tt完成签到,获得积分10
8分钟前
Dryang完成签到 ,获得积分10
8分钟前
8分钟前
煜琪完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788848
求助须知:如何正确求助?哪些是违规求助? 5712796
关于积分的说明 15473966
捐赠科研通 4916884
什么是DOI,文献DOI怎么找? 2646597
邀请新用户注册赠送积分活动 1594281
关于科研通互助平台的介绍 1548701