Adjusting batch effects in microarray expression data using empirical Bayes methods

计算机科学 离群值 数据挖掘 样本量测定 贝叶斯定理 参数统计 贝叶斯概率 软件 人工智能 统计 数学 程序设计语言
作者
W. Evan Johnson,Cheng Li,Ariel Rabinovic
出处
期刊:Biostatistics [Oxford University Press]
卷期号:8 (1): 118-127 被引量:8474
标识
DOI:10.1093/biostatistics/kxj037
摘要

Non-biological experimental variation or "batch effects" are commonly observed across multiple batches of microarray experiments, often rendering the task of combining data from these batches difficult. The ability to combine microarray data sets is advantageous to researchers to increase statistical power to detect biological phenomena from studies where logistical considerations restrict sample size or in studies that require the sequential hybridization of arrays. In general, it is inappropriate to combine data sets without adjusting for batch effects. Methods have been proposed to filter batch effects from data, but these are often complicated and require large batch sizes ( > 25) to implement. Because the majority of microarray studies are conducted using much smaller sample sizes, existing methods are not sufficient. We propose parametric and non-parametric empirical Bayes frameworks for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples. We illustrate our methods using two example data sets and show that our methods are justifiable, easy to apply, and useful in practice. Software for our method is freely available at: http://biosun1.harvard.edu/complab/batch/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DQQ完成签到,获得积分10
刚刚
MR_Z完成签到,获得积分10
刚刚
刚刚
123完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
yangmingyu完成签到,获得积分10
2秒前
流光完成签到,获得积分10
2秒前
虚幻百川完成签到,获得积分10
2秒前
Chany完成签到 ,获得积分10
2秒前
2秒前
zsy发布了新的文献求助10
2秒前
风暴之灵完成签到,获得积分10
3秒前
冷如松发布了新的文献求助30
3秒前
lanlan发布了新的文献求助30
4秒前
zmz发布了新的文献求助50
4秒前
脑洞疼应助月亮不知道采纳,获得20
4秒前
5秒前
maclogos发布了新的文献求助10
5秒前
叹千泠发布了新的文献求助30
5秒前
hd完成签到,获得积分10
6秒前
6秒前
6秒前
共享精神应助微风往事采纳,获得10
6秒前
好想睡觉发布了新的文献求助10
6秒前
迷路赛君完成签到,获得积分10
7秒前
7秒前
大大完成签到,获得积分10
7秒前
文艺如凡完成签到,获得积分10
7秒前
雷家完成签到,获得积分10
7秒前
7秒前
闪闪的完成签到,获得积分20
7秒前
卷心菜发布了新的文献求助10
7秒前
深情安青应助Atopos采纳,获得10
7秒前
噗咔咔ya完成签到 ,获得积分10
7秒前
Hello应助Haoyun采纳,获得10
7秒前
顺心夜南应助miao采纳,获得20
8秒前
重楼远志发布了新的文献求助100
8秒前
李健应助LDD采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005