Graph Clustering Via a Discrete Uncoupling Process

数学 随机矩阵 聚类分析 马尔可夫链 基质(化学分析) 二次方程 随机过程 极限(数学) 随机游动 离散数学 应用数学 组合数学 数学优化 数学分析 几何学 统计 复合材料 材料科学
作者
Stijn van Dongen
出处
期刊:SIAM Journal on Matrix Analysis and Applications [Society for Industrial and Applied Mathematics]
卷期号:30 (1): 121-141 被引量:460
标识
DOI:10.1137/040608635
摘要

A discrete uncoupling process for finite spaces is introduced, called the Markov Cluster Process or the MCL process. The process is the engine for the graph clustering algorithm called the MCL algorithm. The MCL process takes a stochastic matrix as input, and then alternates expansion and inflation, each step defining a stochastic matrix in terms of the previous one. Expansion corresponds with taking the kth power of a stochastic matrix, where $k\in\N$. Inflation corresponds with a parametrized operator $\Gamma_r$, $r\geq 0$, that maps the set of (column) stochastic matrices onto itself. The image $\Gamma_r M$ is obtained by raising each entry in M to the rth power and rescaling each column to have sum 1 again. In practice the process converges very fast towards a limit that is invariant under both matrix multiplication and inflation, with quadratic convergence around the limit points. The heuristic behind the process is its expected behavior for (Markov) graphs possessing cluster structure. The process is typically applied to the matrix of random walks on a given graph G, and the connected components of (the graph associated with) the process limit generically allow a clustering interpretation of G. The limit is in general extremely sparse and iterands are sparse in a weighted sense, implying that the MCL algorithm is very fast and highly scalable. Several mathematical properties of the MCL process are established. Most notably, the process (and algorithm) iterands posses structural properties generalizing the mapping from process limits onto clusterings. The inflation operator $\Gamma_r$ maps the class of matrices that are diagonally similar to a symmetric matrix onto itself. The phrase diagonally positive semi-definite (dpsd) is used for matrices that are diagonally similar to a positive semi-definite matrix. For $r\in\N$ and for M a stochastic dpsd matrix, the image $\Gamma_r M$ is again dpsd. Determinantal inequalities satisfied by a dpsd matrix M imply a natural ordering among the diagonal elements of M, generalizing the mapping of process limits onto clusterings. The spectrum of $\Gamma_{\infty} M$ is of the form $\{0^{n-k}, 1^k\}$, where k is the number of endclasses of the ordering associated with M, and n is the dimension of M. This attests to the uncoupling effect of the inflation operator.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GXNU完成签到,获得积分10
刚刚
思源应助sby19采纳,获得10
1秒前
dlfg完成签到,获得积分10
1秒前
所所应助哒哒猪采纳,获得10
1秒前
支支完成签到,获得积分10
2秒前
陈富贵完成签到 ,获得积分10
3秒前
bkagyin应助zjk采纳,获得10
4秒前
5秒前
情怀应助joysa采纳,获得10
5秒前
SYLH应助Abi采纳,获得10
5秒前
7秒前
刘洋完成签到,获得积分10
8秒前
韶安萱发布了新的文献求助10
10秒前
10秒前
Metrix发布了新的文献求助10
10秒前
无花果应助Abi采纳,获得10
10秒前
10秒前
科研通AI5应助brazenness采纳,获得10
11秒前
12秒前
以默发布了新的文献求助10
12秒前
VDC应助经验丰富的菜狗采纳,获得30
12秒前
tmxx发布了新的文献求助10
13秒前
orixero应助DT采纳,获得10
13秒前
15秒前
小星云发布了新的文献求助10
15秒前
冷傲机器猫完成签到,获得积分10
15秒前
Marvin42完成签到,获得积分10
16秒前
16秒前
独钓寒江雪完成签到 ,获得积分10
16秒前
奶龙淦贝利亚完成签到,获得积分10
17秒前
李健的小迷弟应助阳仔采纳,获得10
17秒前
星星月完成签到 ,获得积分10
17秒前
18秒前
18秒前
海中有月发布了新的文献求助10
19秒前
21秒前
21秒前
brazenness完成签到,获得积分10
21秒前
汐流年完成签到,获得积分10
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565965
求助须知:如何正确求助?哪些是违规求助? 3138688
关于积分的说明 9428637
捐赠科研通 2839429
什么是DOI,文献DOI怎么找? 1560725
邀请新用户注册赠送积分活动 729866
科研通“疑难数据库(出版商)”最低求助积分说明 717679