数学
最大熵概率分布
最大熵原理
雷诺熵
概率密度函数
应用数学
熵(时间箭头)
指数函数
指数族
概率分布
四次方程
最大熵热力学
统计物理学
指数分布
二元熵函数
数学分析
统计
纯数学
物理
量子力学
作者
Arnold Zellner,Richard A. Highfield
标识
DOI:10.1016/0304-4076(88)90002-4
摘要
It is shown how members of the broad class of Cobb-Koppstein-Chen probability density functions can be generated by maximizing Shannon's entropy subject to appropriate side conditions. A particular member of the class, the quartic exponential distribution, is obtained by maximizing Shannon's entropy subject to the conditions that the probability density function integrate to one and have given first four moments. An algorithm for computing the quartic exponential distribution is provided and applied to approximate marginal posterior probability densities. These approximations are compared with those provided by the Pearson density function approximation procedure and exact densities obtained by numerical integration. It is found that the maximum entropy method performs very well.
科研通智能强力驱动
Strongly Powered by AbleSci AI