球体
机械
唤醒
对流
多孔介质
化学
包络线(雷达)
多孔性
材料科学
物理
复合材料
天文
计算机科学
电信
雷达
作者
Vasudevan Raghavan,V. Babu,T. Sundararajan
标识
DOI:10.1080/13647830902822198
摘要
Flame interaction during the burning of two porous spheres in tandem arrangement fed with methanol and subjected to a mixed convective environment, has been studied experimentally and numerically. Porous sphere technique is employed for experimentally simulating the burning characteristics of methanol transpired spheres of different sizes, separated by fixed distances. The mass burning rates from both the spheres and visible flame stand-off distances from the sphere surfaces have been measured in the experiments. In the numerical simulations, transient, axisymmetric, mass, momentum, species and energy conservation equations are solved using a finite volume technique based on non-orthogonal semi-collocated grids. Features of the numerical model include finite rate chemistry and temperature and mixture composition dependent thermo-physical properties. Burning of tandem porous spheres in an air stream flowing vertically upwards, at atmospheric pressure has been simulated for different sphere sizes, separation distances and free stream velocities. The numerical predictions have been compared with experimental results. Results reveal that when two spheres burn one over the other, the transition from envelope to wake flame is delayed when compared with that of an isolated sphere. For two spheres of same diameter burning one over the other, depending on the separation distance, flame blows-off after the occurrence of transition from envelope to wake flame in the bottom sphere. For the case of larger sphere at the top, either the flame stabilises in the recirculation zone formed in between the spheres or the flame from the smaller sphere lifts off and stabilises near the front portion of the larger sphere, depending on the separation distance. At higher separation distances, around four times the diameter of the sphere, both the spheres burn independently. The burning rate undergoes complex variations with air stream velocity depending on the sphere sizes and separation distances.
科研通智能强力驱动
Strongly Powered by AbleSci AI