Simple patterns behind complex spatial pain reporting? Assessing a classification of multisite pain reporting in the general population

医学 人口 物理疗法 潜在类模型 关节痛 流行病学 病理 数学 环境卫生 统计
作者
Carsten Oliver Schmidt,Sebastian E. Baumeister
出处
期刊:Pain [Ovid Technologies (Wolters Kluwer)]
卷期号:133 (1): 174-182 被引量:54
标识
DOI:10.1016/j.pain.2007.04.022
摘要

Pain is a common symptom in the general population. While most subjects experience pain in more than one body site, most epidemiologic and clinical studies focus on single pain sites. Limited evidence on spatial pain pattern reporting is available to date. This study develops a taxonomy for complex spatial pain pattern reporting in the general population, and assesses associations to external criteria with emphasis on physical and social functioning. Analyses are based on the cross-sectional German National Health Survey. In total, 7124 subjects aged 18–79 completed a self-rating questionnaire. It comprised items on the 7-day prevalence of pain in 13 body sites. Physical and social functioning were assessed with the Short Form 36. Lifetime prevalences of migraine and degenerative and inflammatory joint diseases were measured using layman descriptions. Latent class cluster analysis was used to classify spatial pain patterns. Four-hundred and seventy-five spatial pain patterns were grouped into seven pain classes: no or one painful body site (46.9%), prevailing headache with limited upper body involvement (16.4%), musculoskeletal upper body pain either with (8.2%) or without headache (8.5%), musculoskeletal pain in the back and lower extremities (10.8%), widespread musculoskeletal pain (4.9%), and whole body pain (4.3%). The seven pain classes differed substantially with regard to sociodemographic characteristics, and showed meaningful associations to self-reported medical diseases. Spatial pain patterns predicted physical functioning better than social functioning. The results suggest that a meaningful classification of complex pain patterns may be based on a very simple measure of pain symptoms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水凝胶发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
Bellona完成签到,获得积分10
1秒前
1秒前
chenling发布了新的文献求助10
1秒前
1秒前
金甲狮王完成签到,获得积分10
1秒前
孤独惜海完成签到,获得积分10
2秒前
科研通AI2S应助566采纳,获得10
2秒前
3秒前
希望天下0贩的0应助LucyLi采纳,获得10
3秒前
3秒前
Honahlee发布了新的文献求助10
3秒前
乱世发布了新的文献求助10
3秒前
li发布了新的文献求助10
3秒前
瑾年发布了新的文献求助10
4秒前
沉静白翠发布了新的文献求助10
4秒前
4秒前
小爱同学完成签到,获得积分10
4秒前
Lucas应助六七采纳,获得10
4秒前
queer完成签到,获得积分10
5秒前
5秒前
青藤完成签到,获得积分10
6秒前
烟里戏发布了新的文献求助30
6秒前
孤独惜海发布了新的文献求助10
6秒前
buno应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
8秒前
关添应助科研通管家采纳,获得20
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
buno应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得100
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
阔达晓博完成签到,获得积分20
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
buno应助科研通管家采纳,获得10
8秒前
残剑月应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836