Concept mapping assessment in medical education: a comparison of two scoring systems

概念图 等级间信度 可靠性(半导体) 心理学 计算机科学 医学教育 医学 数学教育 评定量表 发展心理学 量子力学 物理 功率(物理)
作者
Daniel C. West,Jeanny K. Park,J. Richard Pomeroy,Jonathan Sandoval
出处
期刊:Medical Education [Wiley]
卷期号:36 (9): 820-826 被引量:125
标识
DOI:10.1046/j.1365-2923.2002.01292.x
摘要

Background Concept mapping has the potential to measure important aspects of a student's evolving knowledge framework in a way that conventional examinations cannot. This is important because development of an elaborate and well-structured knowledge framework is a critical step toward becoming an expert in a particular field. Little is known about the best way to score concept maps in the setting of medical education. Therefore, as a preliminary step in addressing this question, we compared two different scoring systems for validity: a structural method based on the organization of a map's hierarchical structure and a relational method based, not on structure, but on the quality of each individual map component. Methods A total of 21 paediatric resident doctors completed concept map training, drew a preinstruction concept map about 'seizures', completed a seizure education course, and then drew a postinstruction seizure map. Two raters using both structural and relational methods scored each map. Results Structural scores increased significantly after instruction and were higher in more experienced residents, but relational scores were not significantly different. Interrater scoring reliability for both methods ranged from moderate to strong, but was greater using the relational scoring method. Conclusions These data suggest that scoring systems for evaluating concept maps in postgraduate medical education may need to account for structural features of maps, if scores are to reflect changes in the developing knowledge frameworks of resident doctors. More research to further evaluate reliability and validity is critical prior to any future use of concept mapping assessment in medical education.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助无氧先锋666采纳,获得10
刚刚
rrjl发布了新的文献求助10
1秒前
研友_VZG7GZ应助李思雨采纳,获得10
1秒前
1秒前
he完成签到,获得积分10
2秒前
呆萌晓丝发布了新的文献求助10
2秒前
小二郎应助复杂储采纳,获得10
3秒前
崔文浩发布了新的文献求助10
4秒前
悟空完成签到,获得积分10
5秒前
ycl发布了新的文献求助10
5秒前
guse完成签到 ,获得积分10
6秒前
cc发布了新的文献求助10
6秒前
liangliang完成签到,获得积分10
6秒前
7秒前
桃铱铱发布了新的文献求助10
7秒前
甜美奇异果完成签到,获得积分10
7秒前
饶天源发布了新的文献求助30
8秒前
8秒前
标致的妙菱完成签到,获得积分10
10秒前
缥缈完成签到,获得积分10
10秒前
无花果应助建国采纳,获得10
10秒前
Manphie应助lrz采纳,获得10
11秒前
科研小兰发布了新的文献求助10
11秒前
在水一方应助这个真不懂采纳,获得10
12秒前
移动完成签到 ,获得积分10
12秒前
李健的小迷弟应助白羊采纳,获得10
12秒前
14秒前
崔文浩完成签到,获得积分20
15秒前
烟花应助loc1101采纳,获得10
15秒前
16秒前
LYF000666完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
李小猫完成签到,获得积分10
17秒前
yyy完成签到,获得积分10
18秒前
HuSP完成签到,获得积分10
19秒前
L912294993完成签到,获得积分0
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5322192
求助须知:如何正确求助?哪些是违规求助? 4463759
关于积分的说明 13891152
捐赠科研通 4355055
什么是DOI,文献DOI怎么找? 2392149
邀请新用户注册赠送积分活动 1385755
关于科研通互助平台的介绍 1355494