Recent progress in neural network estimation of atmospheric profiles using microwave and hyperspectral infrared sounding data in the presence of clouds

先进的微波电测深单位 大气红外探测仪 无线电探空仪 测深 遥感 光辉 高光谱成像 环境科学 云计算 气象学 大气探测 人工神经网络 微波食品加热 数据同化 计算机科学 水蒸气 人工智能 地质学 地理 电信 海洋学 操作系统
作者
William J. Blackwell,Frederick W. Chen
出处
期刊:Proceedings of SPIE 卷期号:6565: 65651N-65651N 被引量:3
标识
DOI:10.1117/12.717546
摘要

Recent work has demonstrated the feasibility of neural network estimation techniques for atmospheric profiling in partially cloudy atmospheres using combined microwave (MW) and hyperspectral infrared (IR) sounding data. In this paper, the global retrieval performance of the stochastic cloud-clearing / neural network (SCC/NN) method is examined using atmospheric fields provided by the European Center for Medium-range Weather Forecasting (ECMWF) and in situ measurements from the NOAA radiosonde database. Furthermore, the retrieval performance of the neural network method is compared with the AIRS Level 2 algorithm (Version 4). Comparisons of both forecast and radiosonde data indicate that the neural network retrieval performance is similar to or exceeds that of the AIRS Level 2 (version 4) profile products, substantially so in very cloudy areas. A novel statistical method for the global retrieval of atmospheric temperature and water vapor profiles in cloudy conditions has been developed and evaluated with sounding data from the Atmospheric InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU). The present work focuses on the cloud impact on the AIRS radiances and explores the use of Stochastic Cloud Clearing (SCC) together with neural network estimation. A stand-alone statistical algorithm will be presented that operates directly on cloud-impacted AIRS/AMSU data, with no need for a physical cloud clearing process. The algorithm is implemented in three stages. First, the infrared radiance perturbations due to clouds are estimated and corrected by combined processing of the infrared and microwave data using the SCC method. The cloud clearing of the infrared radiances was performed using principal components analysis of infrared brightness temperature contrasts in adjacent fields of view and microwave-derived estimates of the infrared clear-column radiances to estimate and correct the radiance contamination introduced by clouds. Second, a Projected Principal Components (PPC) transform is used to reduce the dimensionality of and optimally extract geophysical profile information from the cloud-cleared infrared radiance data. Third, an artificial feedforward neural network (NN) is used to estimate the desired geophysical parameters from the projected principal components. The performance of this method was evaluated using global (ascending and descending) EOS-Aqua orbits co-located with ECMWF fields for a variety of days throughout 2002 and 2003. Over 500,000 fields of regard (3x3 arrays of footprints) over ocean and land were used in the study. The NOAA radiosonde database was also used to assess performance - approximately 2000 global, quality-controlled radiosondes were selected for the comparison. The SCC/NN method requires significantly less computation (up to a factor of three orders of magnitude) than traditional variational retrieval methods, while achieving comparable global performance. Accuracies in areas of severe clouds (cloud fractions exceeding about 60 percent) is particular encouraging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wufel2完成签到,获得积分10
刚刚
秦礼发布了新的文献求助10
1秒前
1秒前
张润泽发布了新的文献求助10
1秒前
潇洒的怜蕾完成签到,获得积分10
2秒前
519完成签到,获得积分10
2秒前
2秒前
小二郎应助背后的桐采纳,获得10
2秒前
计划明天炸地球完成签到,获得积分10
2秒前
HR112应助沉默的小天鹅采纳,获得10
3秒前
研友_Y59785应助彳亍采纳,获得10
3秒前
CodeCraft应助122319采纳,获得10
3秒前
3秒前
3秒前
苹果发布了新的文献求助10
4秒前
小艳胡发布了新的文献求助10
4秒前
4秒前
鹿子完成签到 ,获得积分10
4秒前
4秒前
4秒前
zJx丶发布了新的文献求助10
5秒前
desperado完成签到 ,获得积分10
6秒前
榜一大哥的负担完成签到 ,获得积分10
6秒前
奈何人生发布了新的文献求助10
6秒前
6秒前
Yang完成签到,获得积分10
6秒前
冰冰完成签到,获得积分20
7秒前
wufel完成签到,获得积分10
7秒前
JKJ发布了新的文献求助10
7秒前
121发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
李健应助张润泽采纳,获得10
9秒前
IETPer发布了新的文献求助10
9秒前
9秒前
欣喜访旋发布了新的文献求助10
9秒前
10秒前
汉堡包应助ouyggg采纳,获得10
10秒前
冰冰发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635