Recent progress in neural network estimation of atmospheric profiles using microwave and hyperspectral infrared sounding data in the presence of clouds

先进的微波电测深单位 大气红外探测仪 无线电探空仪 测深 遥感 光辉 高光谱成像 环境科学 云计算 气象学 大气探测 人工神经网络 微波食品加热 数据同化 计算机科学 水蒸气 人工智能 地质学 地理 电信 海洋学 操作系统
作者
William J. Blackwell,Frederick W. Chen
出处
期刊:Proceedings of SPIE 卷期号:6565: 65651N-65651N 被引量:3
标识
DOI:10.1117/12.717546
摘要

Recent work has demonstrated the feasibility of neural network estimation techniques for atmospheric profiling in partially cloudy atmospheres using combined microwave (MW) and hyperspectral infrared (IR) sounding data. In this paper, the global retrieval performance of the stochastic cloud-clearing / neural network (SCC/NN) method is examined using atmospheric fields provided by the European Center for Medium-range Weather Forecasting (ECMWF) and in situ measurements from the NOAA radiosonde database. Furthermore, the retrieval performance of the neural network method is compared with the AIRS Level 2 algorithm (Version 4). Comparisons of both forecast and radiosonde data indicate that the neural network retrieval performance is similar to or exceeds that of the AIRS Level 2 (version 4) profile products, substantially so in very cloudy areas. A novel statistical method for the global retrieval of atmospheric temperature and water vapor profiles in cloudy conditions has been developed and evaluated with sounding data from the Atmospheric InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU). The present work focuses on the cloud impact on the AIRS radiances and explores the use of Stochastic Cloud Clearing (SCC) together with neural network estimation. A stand-alone statistical algorithm will be presented that operates directly on cloud-impacted AIRS/AMSU data, with no need for a physical cloud clearing process. The algorithm is implemented in three stages. First, the infrared radiance perturbations due to clouds are estimated and corrected by combined processing of the infrared and microwave data using the SCC method. The cloud clearing of the infrared radiances was performed using principal components analysis of infrared brightness temperature contrasts in adjacent fields of view and microwave-derived estimates of the infrared clear-column radiances to estimate and correct the radiance contamination introduced by clouds. Second, a Projected Principal Components (PPC) transform is used to reduce the dimensionality of and optimally extract geophysical profile information from the cloud-cleared infrared radiance data. Third, an artificial feedforward neural network (NN) is used to estimate the desired geophysical parameters from the projected principal components. The performance of this method was evaluated using global (ascending and descending) EOS-Aqua orbits co-located with ECMWF fields for a variety of days throughout 2002 and 2003. Over 500,000 fields of regard (3x3 arrays of footprints) over ocean and land were used in the study. The NOAA radiosonde database was also used to assess performance - approximately 2000 global, quality-controlled radiosondes were selected for the comparison. The SCC/NN method requires significantly less computation (up to a factor of three orders of magnitude) than traditional variational retrieval methods, while achieving comparable global performance. Accuracies in areas of severe clouds (cloud fractions exceeding about 60 percent) is particular encouraging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
xxxx完成签到 ,获得积分10
刚刚
刚刚
1秒前
Mp4完成签到 ,获得积分10
1秒前
1秒前
欣喜的薯片完成签到 ,获得积分10
2秒前
2秒前
CodeCraft应助zhangkx23采纳,获得10
3秒前
5秒前
希望天下0贩的0应助ckx采纳,获得10
5秒前
小米发布了新的文献求助10
6秒前
SCI1区发布了新的文献求助10
6秒前
情怀应助热闹的冬天采纳,获得10
7秒前
7秒前
老福贵儿应助称心的板栗采纳,获得10
8秒前
栗西西完成签到,获得积分10
8秒前
8秒前
Mizuki完成签到,获得积分10
9秒前
雾海完成签到,获得积分10
9秒前
小雨点完成签到,获得积分10
9秒前
kkscanl完成签到 ,获得积分10
9秒前
柚子完成签到 ,获得积分10
10秒前
孔孔完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
zhangkx23发布了新的文献求助10
13秒前
程瑞哲发布了新的文献求助10
15秒前
阳光的小土豆完成签到,获得积分10
16秒前
zhangkx23完成签到,获得积分10
19秒前
Xinxin完成签到,获得积分10
20秒前
十号信封完成签到,获得积分10
21秒前
云柔竹劲完成签到 ,获得积分10
23秒前
星辰大海应助Xinxin采纳,获得10
24秒前
研友_VZG7GZ应助YangLi采纳,获得10
25秒前
26秒前
科研通AI6应助song采纳,获得10
27秒前
陈艺杨完成签到 ,获得积分10
27秒前
28秒前
完美世界应助默默的冰兰采纳,获得10
29秒前
mengtingmei应助科研通管家采纳,获得10
29秒前
桐桐应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495177
求助须知:如何正确求助?哪些是违规求助? 4592877
关于积分的说明 14439094
捐赠科研通 4525740
什么是DOI,文献DOI怎么找? 2479654
邀请新用户注册赠送积分活动 1464467
关于科研通互助平台的介绍 1437333