Recent progress in neural network estimation of atmospheric profiles using microwave and hyperspectral infrared sounding data in the presence of clouds

先进的微波电测深单位 大气红外探测仪 无线电探空仪 测深 遥感 光辉 高光谱成像 环境科学 云计算 气象学 大气探测 人工神经网络 微波食品加热 数据同化 计算机科学 水蒸气 人工智能 地质学 地理 电信 海洋学 操作系统
作者
William J. Blackwell,Frederick W. Chen
出处
期刊:Proceedings of SPIE 卷期号:6565: 65651N-65651N 被引量:3
标识
DOI:10.1117/12.717546
摘要

Recent work has demonstrated the feasibility of neural network estimation techniques for atmospheric profiling in partially cloudy atmospheres using combined microwave (MW) and hyperspectral infrared (IR) sounding data. In this paper, the global retrieval performance of the stochastic cloud-clearing / neural network (SCC/NN) method is examined using atmospheric fields provided by the European Center for Medium-range Weather Forecasting (ECMWF) and in situ measurements from the NOAA radiosonde database. Furthermore, the retrieval performance of the neural network method is compared with the AIRS Level 2 algorithm (Version 4). Comparisons of both forecast and radiosonde data indicate that the neural network retrieval performance is similar to or exceeds that of the AIRS Level 2 (version 4) profile products, substantially so in very cloudy areas. A novel statistical method for the global retrieval of atmospheric temperature and water vapor profiles in cloudy conditions has been developed and evaluated with sounding data from the Atmospheric InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU). The present work focuses on the cloud impact on the AIRS radiances and explores the use of Stochastic Cloud Clearing (SCC) together with neural network estimation. A stand-alone statistical algorithm will be presented that operates directly on cloud-impacted AIRS/AMSU data, with no need for a physical cloud clearing process. The algorithm is implemented in three stages. First, the infrared radiance perturbations due to clouds are estimated and corrected by combined processing of the infrared and microwave data using the SCC method. The cloud clearing of the infrared radiances was performed using principal components analysis of infrared brightness temperature contrasts in adjacent fields of view and microwave-derived estimates of the infrared clear-column radiances to estimate and correct the radiance contamination introduced by clouds. Second, a Projected Principal Components (PPC) transform is used to reduce the dimensionality of and optimally extract geophysical profile information from the cloud-cleared infrared radiance data. Third, an artificial feedforward neural network (NN) is used to estimate the desired geophysical parameters from the projected principal components. The performance of this method was evaluated using global (ascending and descending) EOS-Aqua orbits co-located with ECMWF fields for a variety of days throughout 2002 and 2003. Over 500,000 fields of regard (3x3 arrays of footprints) over ocean and land were used in the study. The NOAA radiosonde database was also used to assess performance - approximately 2000 global, quality-controlled radiosondes were selected for the comparison. The SCC/NN method requires significantly less computation (up to a factor of three orders of magnitude) than traditional variational retrieval methods, while achieving comparable global performance. Accuracies in areas of severe clouds (cloud fractions exceeding about 60 percent) is particular encouraging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
宽宽完成签到,获得积分10
刚刚
刘明发布了新的文献求助10
1秒前
幽默的太阳完成签到 ,获得积分10
1秒前
euphie发布了新的文献求助10
1秒前
1秒前
狂野世立完成签到,获得积分10
3秒前
久木完成签到,获得积分20
3秒前
3秒前
所所应助hvgjgfjhgjh采纳,获得10
4秒前
专注若蕊完成签到,获得积分10
4秒前
小二郎应助挖掘机采纳,获得10
4秒前
魔幻颜发布了新的文献求助10
4秒前
快乐的紫山完成签到 ,获得积分10
5秒前
5秒前
lalala发布了新的文献求助10
5秒前
多情新蕾发布了新的文献求助10
7秒前
Owen应助Shawn采纳,获得10
7秒前
7秒前
LY发布了新的文献求助10
8秒前
EwhenQ发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
VK2801发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
科研通AI6.1应助科研通管家采纳,获得100
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749652
求助须知:如何正确求助?哪些是违规求助? 5460000
关于积分的说明 15364278
捐赠科研通 4889098
什么是DOI,文献DOI怎么找? 2628929
邀请新用户注册赠送积分活动 1577176
关于科研通互助平台的介绍 1533851