正交性
正交基
质心
四元数
旋转矩阵
旋转(数学)
数学
正交矩阵
坐标系
方向(向量空间)
基质(化学分析)
系数矩阵
算法
数学分析
计算机科学
几何学
正交基
物理
特征向量
材料科学
复合材料
量子力学
作者
Berthold K. P. Horn,Hugh M. Hilden,S. Negahdaripour
标识
DOI:10.1364/josaa.5.001127
摘要
Finding the relationship between two coordinate systems by using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task. The solution has applications in stereophotogrammetry and in robotics. We present here a closed-form solution to the least-squares problem for three or more points. Currently, various empirical, graphical, and numerical iterative methods are in use. Derivation of a closed-form solution can be simplified by using unit quaternions to represent rotation, as was shown in an earlier paper [ J. Opt. Soc. Am. A4, 629 ( 1987)]. Since orthonormal matrices are used more widely to represent rotation, we now present a solution in which 3 × 3 matrices are used. Our method requires the computation of the square root of a symmetric matrix. We compare the new result with that obtained by an alternative method in which orthonormality is not directly enforced. In this other method a best-fit linear transformation is found, and then the nearest orthonormal matrix is chosen for the rotation. We note that the best translational offset is the difference between the centroid of the coordinates in one system and the rotated and scaled centroid of the coordinates in the other system. The best scale is equal to the ratio of the root-mean-square deviations of the coordinates in the two systems from their respective centroids. These exact results are to be preferred to approximate methods based on measurements of a few selected points.
科研通智能强力驱动
Strongly Powered by AbleSci AI