Accuracy of clinical signs, SEP, and EEG in predicting outcome of hypoxic coma

接收机工作特性 彗差(光学) 置信区间 医学 曲线下面积 脑电图 格拉斯哥昏迷指数 内科学 听力学 麻醉 精神科 物理 光学
作者
Yi‐Chia Lee,Thanh G. Phan,D. Jolley,Helen Castley,David A. Ingram,David C. Reutens
出处
期刊:Neurology [Ovid Technologies (Wolters Kluwer)]
卷期号:74 (7): 572-580 被引量:38
标识
DOI:10.1212/wnl.0b013e3181cff761
摘要

Accurate prediction of neurologic outcome after hypoxic coma is important. Previous systematic reviews have not used summary statistics to summarize and formally compare the accuracy of different prognostic tests. We therefore used summary receiver operating characteristic curve (SROC) and cluster regression methods to compare motor and pupillary responses with sensory evoked potential (SEP) and EEG in predicting outcome after hypoxic coma.We searched PubMed, MEDLINE, and Embase (1966-2007) for reports in English, German, and French and identified 25 suitable studies. An SROC was constructed for each marker (SEP, EEG, M1 and M < or = 3), and the area under the curve (AUC), a measure of diagnostic accuracy, was determined. For comparison, we calculated the differences between the AUC for each test and M1 reference standard.The AUC for absent SEP was larger than those for M1, M < or = 3, absent pupillary response, and EEG when the examinations were performed within the first 24 hours. The difference between the AUC for SEP (AUC 0.891) and that for M1 (AUC 0.786) was small (0.105, 95% confidence interval 0.023-0.187), only reaching significance on day 1 after coma onset. The use of M < or = 3 improved the diagnostic accuracy of motor signs.This study demonstrated that sensory evoked potential (SEP) is marginally better than M1 at predicting outcome after hypoxic coma. However, the superiority of SEP diminishes after day 1 and when M < or = 3 is used. The findings therefore caution against the tendency to generalize that SEP is a better marker than clinical signs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
硕硕完成签到,获得积分10
1秒前
misschiu完成签到,获得积分10
2秒前
Ah发布了新的文献求助10
2秒前
英俊的铭应助小暴采纳,获得10
3秒前
可鹿丽完成签到 ,获得积分10
3秒前
4秒前
4秒前
Hour完成签到,获得积分20
4秒前
litianchi完成签到,获得积分10
5秒前
HOAN应助Katyusha采纳,获得30
5秒前
5秒前
量子星尘发布了新的文献求助10
7秒前
小李发布了新的文献求助10
7秒前
zzk完成签到,获得积分10
8秒前
8秒前
必发Nature完成签到,获得积分10
8秒前
务实觅松完成签到 ,获得积分10
9秒前
9秒前
无极微光应助luo采纳,获得20
10秒前
希望天下0贩的0应助碎碎采纳,获得10
10秒前
yoyo完成签到 ,获得积分10
11秒前
科研通AI2S应助wxd采纳,获得10
11秒前
11秒前
Liliz发布了新的文献求助10
11秒前
KYT发布了新的文献求助10
11秒前
12秒前
14秒前
小李完成签到,获得积分10
14秒前
李爱国应助Whizzin采纳,获得20
14秒前
人类高血压女性完成签到,获得积分10
15秒前
15秒前
浩然完成签到,获得积分20
16秒前
16秒前
mumu发布了新的文献求助10
16秒前
16秒前
16秒前
学术搭子发布了新的文献求助10
16秒前
17秒前
哗啦啦发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756