数学
反例
李普希茨连续性
数理经济学
通知
正多边形
简单(哲学)
主题(文档)
组合数学
域代数上的
牙石(牙科)
离散数学
纯数学
计算机科学
法学
政治学
认识论
图书馆学
哲学
医学
几何学
牙科
作者
S. Chandra,Joydeep Dutta,C. S. Lalitha
标识
DOI:10.1081/nfa-200042637
摘要
Abstract The aim of this article is to study necessary optimality conditions for a vector minimization program involving locally Lipschitz functions under certain general regularity conditions. We study problems involving only inequality and both inequality and equality constraints. Key Words: Vector optimizationNonsmooth optimizationRegularity conditionsConvex optimizationMathematical Subject Classification: Primary 90C29Secondary 90C46 Acknowledgment The authors are grateful to Professor B. D. Craven his helpful comments which significantly improved an earlier version of the paper. The authors are thankful to Professor Pham Huu Sach for bringing reference (Dolezal, Citation1984) to our notice and very kindly providing a copy of the same. The authors are also grateful to Professor J. E. Martinez-Legaz who provided us a very simple counterexample to demonstrate that the Tucker Theorem of the Alternative fails for the convex case.
科研通智能强力驱动
Strongly Powered by AbleSci AI