Multi-rate data fusion for dynamic displacement measurement of beam-like supertall structures using acceleration and strain sensors

流离失所(心理学) 加速度 结构健康监测 传感器融合 计算机科学 噪音(视频) 动态试验 结构工程 工程类 人工智能 物理 心理学 经典力学 图像(数学) 心理治疗师
作者
Hongping Zhu,Ke Gao,Yong Xia,Fei Gao,Shun Weng,Yuan Sun,Qin Hu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:19 (2): 520-536 被引量:43
标识
DOI:10.1177/1475921719857043
摘要

Accurate measurement of dynamic displacement is important for the structural health monitoring and safety assessment of supertall structures. However, the displacement of a supertall structure is difficult to be accurately measured using the conventional methods because they are either inaccurate or inconvenient to be set up in practice. This study provides an accurate and economical method to measure dynamic displacement of supertall structures accurately by fusing acceleration and strain data, which are generally available in the structural health monitoring system. Dynamic displacement is first derived from the measured longitudinal strains based on geometric deformation without requiring mode shapes. An optimization technique is utilized to optimize the deployment of strain sensors for achieving more accurate strain-derived displacement. The strain-derived displacement is then combined with measured acceleration via a multi-rate Kalman filtering approach. Applications to a numerical supertall structure and a laboratory cantilever beam verify that the proposed method accurately estimates displacement including both high-frequency and pseudo-static components, under different noise cases and sampling rates. A full-scale field test on the 600 m-high Canton Tower is implemented to validate the applicability of the proposed method to real supertall structures. Error analysis demonstrates that the data fusion displacement is more accurate than the global position system-measured displacement in the time and frequency domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NZH发布了新的文献求助10
刚刚
1秒前
2秒前
劲秉应助小木木壮采纳,获得10
2秒前
2秒前
。。。。发布了新的文献求助10
2秒前
赘婿应助过时的元风采纳,获得10
2秒前
1259671587发布了新的文献求助10
2秒前
暴躁的安阳关注了科研通微信公众号
2秒前
jiangmj1990发布了新的文献求助10
3秒前
劲秉应助lvbowen采纳,获得10
4秒前
脑洞疼应助顺利的雨灵采纳,获得10
5秒前
大山完成签到,获得积分10
5秒前
文献完成签到,获得积分20
5秒前
彭于晏应助啦啦啦~采纳,获得10
5秒前
玛利隆发布了新的文献求助30
6秒前
李健应助允怡采纳,获得10
6秒前
6秒前
白糖发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
别管我在发疯完成签到,获得积分10
7秒前
7秒前
ziwantcm发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
糊涂的凡发布了新的文献求助10
8秒前
旭日东升完成签到 ,获得积分10
8秒前
8秒前
一台小钢炮完成签到,获得积分10
9秒前
mia发布了新的文献求助10
9秒前
9秒前
苗苗鱼关注了科研通微信公众号
10秒前
Herro3发布了新的文献求助10
10秒前
Yasong发布了新的文献求助10
11秒前
11秒前
大模型应助1111采纳,获得10
12秒前
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339