自噬
细胞生物学
细胞凋亡
细胞周期
细胞周期检查点
有丝分裂
流式细胞术
化学
免疫沉淀
污渍
激酶
分子生物学
生物
细胞培养
生物化学
基因
遗传学
作者
Nan Liang,Xiaodong Liu,Shimeng Zhang,Hui Sun
标识
DOI:10.1016/j.cellsig.2019.109353
摘要
Beclin 1 is a well-established core mammalian autophagy protein. Autophagy has been demonstrated to play roles in cellular responses to DNA damage, such as cell cycle regulation and apoptosis. In the present study, we investigated the exact mechanism by which Beclin 1 acts as a bridge between autophagy and cell cycle, when cells are exposed to ionizing radiation (IR).Western blotting and coimmunoprecipitation were performed to investigate protein expression levels and interactions. Immunofluorescence was used to monitor the localization and distribution of the indicated proteins. The levels of apoptosis and cell cycle changes were evaluated by flow cytometry. Double thymidine deoxyribonucleoside (TdR) blocking was conducted to differentiate G2 from mitotic delay. In vitro kinase assays using ATM kinase were performed to elucidate the specific phosphorylation site in Beclin 1.In this study, we show that Beclin 1 knockdown reduces IR-induced autophagy. IR enhanced Beclin 1/PIK3CIII complex activity as demonstrated by the results of coimmunoprecipitation and immunofluorescence assays. An investigation to assess the possible relationship between autophagy and G2/M arrest showed that, similar to the autophagy inhibitor 3MA, Beclin 1 knockdown delayed IR-induced G2/M arrest. Furthermore, the interactions between Beclin 1 and several G2/M checkpoint-related proteins, namely, PLK1 and CDC25C, were observed to increase. In addition, we observed that both 3MA and Beclin 1 inhibition decreased IR-induced apoptosis. Regarding the potential mechanism associated with this phenomenon, we showed that IR induced the interaction between Beclin 1 and Tip60 as well as their redistribution. Furthermore, we demonstrated that Beclin 1 T57 may be a targeted phosphorylation site for ATM.In the present study, we demonstrate the crucial and intricate roles of Beclin 1 in IR-induced autophagy, G2/M cell cycle arrest, and apoptosis. Additionally, Tip60 and ATM were identified as important molecular regulators of Beclin 1. Our findings show the precise mechanism of crosstalk between IR-induced autophagy and G2/M cell cycle arrest.
科研通智能强力驱动
Strongly Powered by AbleSci AI