Research on the Key Technology of Chinese Text Sentiment Analysis

文字2vec 情绪分析 计算机科学 人工智能 词典 矢量化(数学) 人工神经网络 深度学习 主成分分析 钥匙(锁) 自然语言处理 维数(图论) 机器学习 词(群论) 大数据 数据挖掘 数学 嵌入 计算机安全 并行计算 纯数学 几何学
作者
Xingtong Ge,Xiaofang Jin,Bo Miao,Chenming Liu,Xinyi Wu
标识
DOI:10.1109/icsess.2018.8663744
摘要

In the era of big data, text sentiment analysis is of great significance to the analysis of public opinion. In general, there are two broad approaches on sentiment analysis, lexicon-based and machine learning-based method. In fact, sentiment analysis belongs to the classification technique as well. Therefore, this paper also studied the method based on deep learning. This paper implemented three approaches and compared the performances of different classification effects. The concept of Word2vec was also introduced to the machine learning-based method. The word vectorization method was used to extract the corpus features and reduce the dimension through the Principal Component Analysis (PCA)algorithm. The fully connected neural network was selected in deep-learning-based method. This paper used keras library to build neural network framework. By comparing the three methods, it was concluded that the machine learning method was the best. The correct rate was 85.60%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YANDD发布了新的文献求助10
1秒前
JenifferF完成签到,获得积分10
1秒前
斯文败类应助岳小哆采纳,获得10
1秒前
完美世界应助sunny采纳,获得10
1秒前
1秒前
老实易蓉完成签到,获得积分10
2秒前
Puffmomozxy应助科研通管家采纳,获得10
2秒前
Puffmomozxy应助科研通管家采纳,获得10
2秒前
Puffmomozxy应助科研通管家采纳,获得10
2秒前
chunjuan应助科研通管家采纳,获得20
2秒前
orixero应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得30
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
高贵的子默完成签到,获得积分10
2秒前
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
劲秉应助科研通管家采纳,获得30
3秒前
Owen应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
整齐芷文发布了新的文献求助10
3秒前
3秒前
ding应助科研通管家采纳,获得10
3秒前
酷波er应助温暖代芙采纳,获得10
3秒前
情怀应助时光采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
在水一方应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
shen应助科研通管家采纳,获得60
4秒前
无花果应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
Tamarin应助小吴采纳,获得10
5秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730122
求助须知:如何正确求助?哪些是违规求助? 3274962
关于积分的说明 9989794
捐赠科研通 2990404
什么是DOI,文献DOI怎么找? 1641106
邀请新用户注册赠送积分活动 779551
科研通“疑难数据库(出版商)”最低求助积分说明 748266