Electrochemically active bacteria in microbial fuel cells

微生物燃料电池 细菌 化学 生物膜 燃料电池 电化学 阴极 微生物
作者
Urania Michaelidou
标识
DOI:10.18174/464206
摘要

Microbial Fuel Cell (MFC) technology has been heralded as a tool for energy conservation, resource recovery and valuable compound synthesis, amongst others. The MFC concept is possible due to the ability of electrochemically active bacteria (EcAB) to transfer the electrons produced from substrate degradation, out of the bacterial cell and onto the electrode surface via different mechanisms; a process called exocellular electron transfer (EET). However, despite advances and extensive studies on EET mechanisms and EcAB, like the Fe(III)-reducing Geobacter sulfurreducens PCA, the technology has not reached yet the stage of broad applicability. This thesis investigates characteristics and performance of EcAB in the anodic compartment of pure- and mixed-culture MFCs in an effort to shed light to processes important to MFC performance and efficiency. In order to reliably study EcAB in a microbial fuel cell environment, a gas-tight, sterile MFC setup was developed and optimized for electrochemical and microbiological studies of the anodic bacteria and consequently the electrochemically active biofilm/bioanode. In addition, a method for Geobacter species quantification with quantitative PCR (qPCR) was developed. Furthermore, a multiple-unit MFC setup was designed for convenient and simultaneous operation of identical MFCs ‘in-parallel’. A design for a new compact, multi-array MFC to be used as a small-scale culturing platform of EcAB based solely on their electrochemical properties is also introduced. Our research with different titanium (Ti) electrodes in the same MFC setup, suggests that the MFC electrode surface is critical as it determines attachment of EcAB and bioanode formation that leads ultimately to efficient electrochemical activity. Pt- and Ta- coated Ti electrodes performed the best while uncoated Ti with either smooth or rough surfaces performed the worst. Future MFC research could benefit greatly from enhancing the electrode interface for optimum bioanode formation and electron transfer. Our studies with flat-plate, graphite-electrode, mixed-culture microbial fuel cells (Pmax ≈ 1 W/m2) operated for several months with external load (Rext), indicated stable and reproducible characteristics including Coulombic efficiencies, average values of cell voltage, anode potentials, and current densities as well as main microbial populations of both the anolyte and the bioanode. However, transient testing of power maxima values (Pmax) that required lower Rext, or applied potential showed result variability, that might be linked to differences in electrochemical impedance factors, redox-active centers and electron-producing states of the bioanodes. Differences in the quantities of the bioanode microbial species did not seem to correlate with this variability. Since energy-conserving applications like waste-water treatment MFCs would ideally be operated with an Rext rather than applied voltage, addressing interface impedance factors, such as charge transfer resistance and electrical double layer capacitance, is important especially when MFCs are operated at lower Rext. Furthermore, mixed-culture MFCs were shown to be selective for certain bacterial consortia, including Geobacter- and Pseudomonas- related species. Geobacter-related species were dominant on the surface of different electrodes suggesting a pivotal role of the species in electrochemical activity and EET. This was not surprising as the original mixed-culture inoculum - used for starting up several bioelectrochemical systems at our research facilities - was amended with pure cultures of G. sulfurreducens PCA. However, the strain specifically selected for and present in most bioanodes was a novel Geobacter, strain T33 that was phylogenetically closely related (99% by 16S rRNA sequence similarity) to several strains detected in a variety of MFCs operated by other research groups under various conditions and anodic substrates. These strains formed a new phylogenetic Geobacter cluster, distinct from G. sulfurreducens. This observation suggested that strain T33 might have an ecological advantage in MFCs over G. sulfurreducens PCA. In-depth characterization of strain T33 in pure-culture experiments showed that strain T33 forms efficient bioanodes with high Pmax similar to strain PCA, but exhibits different redox-centers than strain T33. Furthermore, strain T33 has a more limited electron acceptor range, but a wider electron donor range than strain PCA, including glucose and succinate. Phylogenetic analysis indicated that strain T33 and recently described electrochemically active strains G. soli GSS01 and G. anodireducens SD-1 are closely related (99% by 16S rRNA) and form a new phylogenetic cluster within the Geobacters, 98% by 16S rRNA similar to G. sulfurreducens strains PCA and KN400. Genome-based analyses indicates that even though the two clusters share common metabolic properties, some differences exist with respect to electron donor utilization, attachment and conductive cell surface components (e-pili) production and genome rearrangement and gene acquisition. It is not sufficiently clear how the differences in the genome of strain T33 are relevant to persistence of the strain in MFCs, biofilm formation and EET, our studies overall suggest that strain T33 even though producing similar power densities as G. sulfurreducens PCA, might be more stable and versatile in MFCs, and therefore a better candidate for waste-water treatment if it can couple the oxidation of several organic substrates, as observed with Fe(III)-respiration, also to electrode-respiration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gu123发布了新的文献求助10
2秒前
Liu关闭了Liu文献求助
3秒前
无聊的不愁完成签到,获得积分10
3秒前
望志青年完成签到,获得积分10
4秒前
垃圾桶发布了新的文献求助10
4秒前
扣子完成签到,获得积分20
4秒前
4秒前
chengxiaoli完成签到,获得积分10
7秒前
Broccoli完成签到,获得积分10
7秒前
9秒前
论文顺利发布了新的文献求助30
10秒前
aliime完成签到,获得积分10
11秒前
打工肥仔应助独特夜绿采纳,获得10
11秒前
11秒前
yuan466125789完成签到,获得积分10
13秒前
plutoszq完成签到,获得积分10
14秒前
小帅发布了新的文献求助10
14秒前
淳于绾绾完成签到,获得积分10
14秒前
尔尔发布了新的文献求助100
15秒前
慕青应助瓜子采纳,获得20
16秒前
N7发布了新的文献求助10
17秒前
我想@科研完成签到,获得积分10
18秒前
卡卡罗特先森完成签到 ,获得积分10
18秒前
李爱国应助顺心火龙果采纳,获得10
18秒前
松鼠15111发布了新的文献求助100
18秒前
18秒前
司徒文青应助Lucas采纳,获得30
20秒前
归尘应助云烟采纳,获得10
20秒前
独摇之完成签到,获得积分10
22秒前
tianugui完成签到,获得积分10
24秒前
tingtingzhang发布了新的文献求助10
25秒前
N7完成签到,获得积分10
26秒前
26秒前
27秒前
28秒前
28秒前
赘婿应助moshi采纳,获得10
30秒前
30秒前
30秒前
卡卡西应助宋66采纳,获得20
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969940
求助须知:如何正确求助?哪些是违规求助? 3514642
关于积分的说明 11175298
捐赠科研通 3249947
什么是DOI,文献DOI怎么找? 1795178
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891