布基纸
材料科学
碳纳米管
膜
极限抗拉强度
拉曼光谱
化学工程
X射线光电子能谱
复合材料
氢
气体分离
有机化学
化学
光学
物理
工程类
生物化学
作者
Marie Boháčová,Kateřina Zetková,Petr Knotek,Daniel Bouša,Karel Friess,Petr Číhal,Marek Lanč,Zdeněk Hrdlička,Zdeněk Sofer
标识
DOI:10.1016/j.apmt.2019.02.014
摘要
We demonstrate challenging material properties of flat free-standing chemically modified single wall carbon nanotube (SWCNT) sheets potentially usable as new support materials for gas separation composite membranes. Carbon nanotube samples in bare and oxidized forms were assembled into buckypaper by a vacuum filtration from SWCNT colloidal suspension. The fundamental structure, composition and mechanical properties were examined via SEM, EDS, AFM, XPS, Raman spectroscopy and dynamical mechanical analysis. Gas permeability was determined by the fixed-volume pressure-increase permeation method at 25 °C and 1 bar feed overpressure. The mild SWCNT oxidation caused substantial structural rearrangement of buckypaper with significant impact on its properties. Determined partial opening of nanotubes and the introduction of oxygen-containing species decreased the initial extremely-high H2 permeability from circa 20 million (bare) to almost 5 million barrers while the ideal H2/CO2 selectivity α increased from almost non-selective 1.1 (bare) to 3.5 for the oxidized sample. Furthermore, oxidized form exhibited 2 times lower tensile strength but 2.5 times higher ductility. Such behavior indicates improved mechanical properties of oxidized samples that can undergo significant plastic deformation before the rupture. Determined features make mildly oxidized SWCNT buckypapers potentially attractive as new robust and tunable membrane support material for highly effective hydrogen separation.
科研通智能强力驱动
Strongly Powered by AbleSci AI