Analyzing Bank Overdraft Fees with Big Data

透支 收入 业务 财务 经济盈余 平衡(能力) 消费者选择 经济 福利 营销 医学 市场经济 物理医学与康复
作者
Xiao Liu,Alan L. Montgomery,Kannan Srinivasan
出处
期刊:Marketing Science [Institute for Operations Research and the Management Sciences]
卷期号:37 (6): 855-882 被引量:22
标识
DOI:10.1287/mksc.2018.1106
摘要

In 2012, consumers paid $32 billion in overdraft fees, representing the single largest source of revenue for banks from demand deposit accounts during this period. Owing to consumer attrition caused by overdraft fees and potential government regulations to reform these fees, financial institutions have become motivated to investigate their overdraft fee structures. Banks need to balance the revenue generated from overdraft fees with consumer dissatisfaction and potential churn caused by these fees. However, no empirical research has been conducted to explain consumer responses to overdraft fees or to evaluate alternative pricing strategies associated with these fees. In this research, we propose a dynamic structural model with consumer monitoring costs and dissatisfaction associated with overdraft fees. We apply the model to an enterprise-level data set of more than 500,000 accounts with a history of 450 days, providing a total of 200 million transactions. We find that consumers heavily discount the future and potentially overdraw because of impulsive spending. However, we also find that high monitoring costs hinder consumers’ effort to track their balance accurately; consequently, consumers may overdraw because of rational inattention. The large data set is necessary because of the infrequent nature of overdrafts; however, it also engenders computational challenges, which we address by using parallel computing techniques. Our policy simulations show that alternative pricing strategies may increase bank revenue and improve consumer welfare. Fixed bill schedules and overdraft waiver programs may also enhance social welfare. This paper explains consumer responses to overdraft fees and evaluates alternative pricing strategies associated with these fees. The online appendices are available at https://doi.org/10.1287/mksc.2018.1106 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sutharsons应助科研通管家采纳,获得200
1秒前
orixero应助科研通管家采纳,获得10
1秒前
许多知识发布了新的文献求助10
2秒前
FashionBoy应助su采纳,获得10
2秒前
2秒前
运敬完成签到 ,获得积分10
3秒前
XSB完成签到,获得积分10
3秒前
青草蛋糕完成签到 ,获得积分10
3秒前
怡然剑成完成签到,获得积分10
3秒前
3秒前
liyuchen发布了新的文献求助10
4秒前
ipeakkka完成签到,获得积分20
6秒前
马克发布了新的文献求助10
6秒前
赵OO完成签到,获得积分10
6秒前
Yon完成签到 ,获得积分10
7秒前
呆头完成签到,获得积分10
7秒前
科研通AI5应助skier采纳,获得10
8秒前
ywang发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
keyantong完成签到 ,获得积分10
14秒前
booshu完成签到,获得积分10
15秒前
jy发布了新的文献求助10
16秒前
朴斓完成签到,获得积分10
16秒前
科研通AI5应助魏伯安采纳,获得10
19秒前
哈密哈密完成签到,获得积分10
19秒前
19秒前
Ava应助浪迹天涯采纳,获得10
19秒前
20秒前
安南发布了新的文献求助10
20秒前
21秒前
healthy完成签到 ,获得积分10
21秒前
22秒前
刘大可完成签到,获得积分10
22秒前
25秒前
su发布了新的文献求助10
25秒前
rookie发布了新的文献求助10
26秒前
方勇飞发布了新的文献求助10
27秒前
郭菱香完成签到 ,获得积分20
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824