Analyzing Bank Overdraft Fees with Big Data

透支 收入 业务 财务 经济盈余 平衡(能力) 消费者选择 经济 福利 营销 市场经济 医学 物理医学与康复
作者
Xiao Liu,Alan L. Montgomery,Kannan Srinivasan
出处
期刊:Marketing Science [Institute for Operations Research and the Management Sciences]
卷期号:37 (6): 855-882 被引量:22
标识
DOI:10.1287/mksc.2018.1106
摘要

In 2012, consumers paid $32 billion in overdraft fees, representing the single largest source of revenue for banks from demand deposit accounts during this period. Owing to consumer attrition caused by overdraft fees and potential government regulations to reform these fees, financial institutions have become motivated to investigate their overdraft fee structures. Banks need to balance the revenue generated from overdraft fees with consumer dissatisfaction and potential churn caused by these fees. However, no empirical research has been conducted to explain consumer responses to overdraft fees or to evaluate alternative pricing strategies associated with these fees. In this research, we propose a dynamic structural model with consumer monitoring costs and dissatisfaction associated with overdraft fees. We apply the model to an enterprise-level data set of more than 500,000 accounts with a history of 450 days, providing a total of 200 million transactions. We find that consumers heavily discount the future and potentially overdraw because of impulsive spending. However, we also find that high monitoring costs hinder consumers’ effort to track their balance accurately; consequently, consumers may overdraw because of rational inattention. The large data set is necessary because of the infrequent nature of overdrafts; however, it also engenders computational challenges, which we address by using parallel computing techniques. Our policy simulations show that alternative pricing strategies may increase bank revenue and improve consumer welfare. Fixed bill schedules and overdraft waiver programs may also enhance social welfare. This paper explains consumer responses to overdraft fees and evaluates alternative pricing strategies associated with these fees. The online appendices are available at https://doi.org/10.1287/mksc.2018.1106 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhhhr完成签到,获得积分10
2秒前
太阳雨发布了新的文献求助10
3秒前
DAOXIAN完成签到,获得积分10
3秒前
陈颜完成签到,获得积分10
4秒前
20113011发布了新的文献求助10
4秒前
英俊的铭应助明亮的海冬采纳,获得10
4秒前
4秒前
4秒前
ZZH完成签到,获得积分20
4秒前
毛豆完成签到,获得积分10
4秒前
隐形曼青应助整齐向卉采纳,获得10
4秒前
5秒前
ZZH发布了新的文献求助10
7秒前
动人的雨筠完成签到,获得积分10
7秒前
7秒前
Lobectomy发布了新的文献求助10
9秒前
完美世界应助ww采纳,获得10
10秒前
小小给小小的求助进行了留言
11秒前
xiguo完成签到,获得积分10
11秒前
12秒前
纯真皮卡丘完成签到 ,获得积分10
12秒前
wangzai111发布了新的文献求助10
12秒前
14秒前
整齐向卉发布了新的文献求助10
20秒前
研友_VZG7GZ应助南山采纳,获得10
20秒前
22秒前
NexusExplorer应助xiao采纳,获得10
22秒前
NexusExplorer应助大锤采纳,获得10
23秒前
小富发布了新的文献求助150
24秒前
ZHYU完成签到,获得积分10
25秒前
26秒前
lucygaga完成签到 ,获得积分10
26秒前
28秒前
29秒前
30秒前
小孙完成签到,获得积分10
32秒前
xiuxiuzhang发布了新的文献求助20
33秒前
34秒前
twk发布了新的文献求助10
34秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943