Bayesian approach to a nonlinear inverse problem for a time-space fractional diffusion equation

数学 非线性系统 扩散 反问题 贝叶斯概率 空格(标点符号) 扩散方程 反向 应用数学 数学分析 反常扩散 统计物理学 统计 创新扩散 几何学 物理 计算机科学 经济 操作系统 经济 热力学 量子力学 知识管理 服务(商务)
作者
Yuan-Xiang Zhang,Junxiong Jia,Liang Yan
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:34 (12): 125002-125002 被引量:25
标识
DOI:10.1088/1361-6420/aae04f
摘要

Inverse problems for fractional differential equations have become a promising research area because of their wide applications in many scientific and engineering fields. In particular, the correct orders of fractional derivatives are hard to know as they are usually determined by experimental data and contain non-negligible uncertainty. Therefore, research on inverse problems involving the orders is necessary. Furthermore, problems involving the inversion of fractional orders are essentially nonlinear. Since classical methods may find it hard to provide satisfactory approximations and fail to capture the relevant uncertainty, a natural way to solve such inverse problems is through a Bayesian approach. In this paper, we consider an inverse problem of simultaneously recovering the source function and the orders of both time and space fractional derivatives for a time-space fractional diffusion equation. The problem will be formulated in the Bayesian framework, where the solution is the posterior distribution incorporating the prior information about the unknown and the noisy data. Under the considered infinite-dimensional function space setting, we prove that the corresponding Bayesian inverse problem is well-defined based on a proof of the continuity of the forward mapping. In addition, we also prove that the posterior distribution depends continuously on the data with respect to the Hellinger distance. Moreover, we adopt the iterative regularizing ensemble Kalman method to provide a numerical implementation of the considered inverse problem for the one-dimensional case. The numerical results shed light on the viability and efficiency of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈完成签到 ,获得积分10
刚刚
研究生研究生关注了科研通微信公众号
2秒前
平常平松发布了新的文献求助10
3秒前
寒江雪发布了新的文献求助10
3秒前
在水一方应助糖不太甜采纳,获得10
3秒前
Jasper应助糖不太甜采纳,获得10
3秒前
Orange应助糖不太甜采纳,获得10
3秒前
李健应助糖不太甜采纳,获得10
3秒前
4秒前
共享精神应助糖不太甜采纳,获得10
4秒前
万能图书馆应助糖不太甜采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
痛痛痛完成签到,获得积分10
4秒前
yidi01完成签到,获得积分10
5秒前
6秒前
Siren完成签到,获得积分10
7秒前
Alex发布了新的文献求助10
9秒前
9秒前
今后应助平常平松采纳,获得10
10秒前
zu完成签到 ,获得积分10
10秒前
lily完成签到,获得积分10
11秒前
zeifanqimings完成签到,获得积分10
14秒前
lijunhao发布了新的文献求助80
14秒前
科研通AI6应助lulumomoxixi采纳,获得10
14秒前
14秒前
15秒前
小蘑菇应助Thien采纳,获得10
16秒前
寒江雪发布了新的文献求助10
16秒前
Alex发布了新的文献求助10
17秒前
17秒前
zeifanqimings发布了新的文献求助10
18秒前
慕青应助henzhidequxian采纳,获得10
19秒前
19秒前
隐形曼青应助优秀谷波采纳,获得10
19秒前
公孙世往发布了新的文献求助30
20秒前
完美世界应助hahhha采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
共享精神应助sian采纳,获得10
24秒前
SciGPT应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421901
求助须知:如何正确求助?哪些是违规求助? 4536896
关于积分的说明 14155394
捐赠科研通 4453475
什么是DOI,文献DOI怎么找? 2442890
邀请新用户注册赠送积分活动 1434308
关于科研通互助平台的介绍 1411402