Bayesian approach to a nonlinear inverse problem for a time-space fractional diffusion equation

数学 非线性系统 扩散 反问题 贝叶斯概率 空格(标点符号) 扩散方程 反向 应用数学 数学分析 反常扩散 统计物理学 统计 创新扩散 几何学 物理 计算机科学 经济 操作系统 经济 热力学 量子力学 知识管理 服务(商务)
作者
Yuan-Xiang Zhang,Junxiong Jia,Liang Yan
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:34 (12): 125002-125002 被引量:25
标识
DOI:10.1088/1361-6420/aae04f
摘要

Inverse problems for fractional differential equations have become a promising research area because of their wide applications in many scientific and engineering fields. In particular, the correct orders of fractional derivatives are hard to know as they are usually determined by experimental data and contain non-negligible uncertainty. Therefore, research on inverse problems involving the orders is necessary. Furthermore, problems involving the inversion of fractional orders are essentially nonlinear. Since classical methods may find it hard to provide satisfactory approximations and fail to capture the relevant uncertainty, a natural way to solve such inverse problems is through a Bayesian approach. In this paper, we consider an inverse problem of simultaneously recovering the source function and the orders of both time and space fractional derivatives for a time-space fractional diffusion equation. The problem will be formulated in the Bayesian framework, where the solution is the posterior distribution incorporating the prior information about the unknown and the noisy data. Under the considered infinite-dimensional function space setting, we prove that the corresponding Bayesian inverse problem is well-defined based on a proof of the continuity of the forward mapping. In addition, we also prove that the posterior distribution depends continuously on the data with respect to the Hellinger distance. Moreover, we adopt the iterative regularizing ensemble Kalman method to provide a numerical implementation of the considered inverse problem for the one-dimensional case. The numerical results shed light on the viability and efficiency of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李伟峰完成签到,获得积分10
1秒前
ZT发布了新的文献求助10
2秒前
孙燕应助涛涛正在努力中采纳,获得10
3秒前
开元完成签到,获得积分10
4秒前
Akim应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
SHAO应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
SHAO应助科研通管家采纳,获得30
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
SHAO应助科研通管家采纳,获得10
5秒前
淡淡的香完成签到,获得积分10
7秒前
10秒前
周立成完成签到,获得积分10
11秒前
思源应助jinjin采纳,获得10
13秒前
15秒前
15秒前
19秒前
Owen应助wang_qi采纳,获得10
21秒前
所所应助Rick采纳,获得10
24秒前
24秒前
彳亍发布了新的文献求助10
24秒前
30秒前
30秒前
醉熏的鑫发布了新的文献求助10
33秒前
梁子奥里给完成签到,获得积分10
33秒前
jingxian发布了新的文献求助10
35秒前
wen_xxx发布了新的文献求助10
35秒前
无私追命发布了新的文献求助10
43秒前
44秒前
传奇3应助domingo采纳,获得10
45秒前
Jupiter关注了科研通微信公众号
45秒前
45秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993151
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264447
捐赠科研通 3273745
什么是DOI,文献DOI怎么找? 1806151
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652