Bayesian approach to a nonlinear inverse problem for a time-space fractional diffusion equation

数学 非线性系统 扩散 反问题 贝叶斯概率 空格(标点符号) 扩散方程 反向 应用数学 数学分析 反常扩散 统计物理学 统计 创新扩散 几何学 物理 计算机科学 经济 操作系统 经济 热力学 量子力学 知识管理 服务(商务)
作者
Yuan-Xiang Zhang,Junxiong Jia,Liang Yan
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:34 (12): 125002-125002 被引量:25
标识
DOI:10.1088/1361-6420/aae04f
摘要

Inverse problems for fractional differential equations have become a promising research area because of their wide applications in many scientific and engineering fields. In particular, the correct orders of fractional derivatives are hard to know as they are usually determined by experimental data and contain non-negligible uncertainty. Therefore, research on inverse problems involving the orders is necessary. Furthermore, problems involving the inversion of fractional orders are essentially nonlinear. Since classical methods may find it hard to provide satisfactory approximations and fail to capture the relevant uncertainty, a natural way to solve such inverse problems is through a Bayesian approach. In this paper, we consider an inverse problem of simultaneously recovering the source function and the orders of both time and space fractional derivatives for a time-space fractional diffusion equation. The problem will be formulated in the Bayesian framework, where the solution is the posterior distribution incorporating the prior information about the unknown and the noisy data. Under the considered infinite-dimensional function space setting, we prove that the corresponding Bayesian inverse problem is well-defined based on a proof of the continuity of the forward mapping. In addition, we also prove that the posterior distribution depends continuously on the data with respect to the Hellinger distance. Moreover, we adopt the iterative regularizing ensemble Kalman method to provide a numerical implementation of the considered inverse problem for the one-dimensional case. The numerical results shed light on the viability and efficiency of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL发布了新的文献求助10
刚刚
好心情发布了新的文献求助10
1秒前
1秒前
隐形曼青应助文献查找采纳,获得10
1秒前
善良安梦发布了新的文献求助10
2秒前
淀粉肠发布了新的文献求助10
2秒前
笨笨紫霜完成签到,获得积分10
2秒前
2秒前
大模型应助文艺的青旋采纳,获得10
3秒前
3秒前
strelias发布了新的文献求助10
3秒前
4秒前
俊逸寄灵完成签到,获得积分10
4秒前
5秒前
烟花应助唠叨的凡采纳,获得10
6秒前
静一完成签到,获得积分10
6秒前
欣喜的广山完成签到,获得积分10
7秒前
今后应助实验的兔纸采纳,获得10
7秒前
7秒前
wang发布了新的文献求助10
7秒前
Dingyiren完成签到,获得积分10
7秒前
隐形曼青应助灵巧的白昼采纳,获得10
8秒前
深情安青应助可爱的愚志采纳,获得10
9秒前
完美世界应助dong采纳,获得10
10秒前
12秒前
丘比特应助拓小八采纳,获得10
13秒前
14秒前
ZZZ发布了新的文献求助10
14秒前
科研通AI2S应助圆彰七大采纳,获得10
16秒前
222完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
19秒前
19秒前
走四方应助虚心十三采纳,获得10
19秒前
19秒前
大模型应助sss采纳,获得10
19秒前
科研通AI2S应助活力成败采纳,获得10
20秒前
诚心太君完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135273
求助须知:如何正确求助?哪些是违规求助? 2786262
关于积分的说明 7776475
捐赠科研通 2442202
什么是DOI,文献DOI怎么找? 1298495
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847