Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages

铌酸锂 材料科学 光电子学 光子学 CMOS芯片 电压 光调制器 电气工程 相位调制 工程类 相位噪声
作者
Cheng Wang,Mian Zhang,Xi Chen,Maxime Bertrand,Amirhassan Shams‐Ansari,S. Chandrasekhar,Peter J. Winzer,Marko Lončar
出处
期刊:Nature [Springer Nature]
卷期号:562 (7725): 101-104 被引量:2068
标识
DOI:10.1038/s41586-018-0551-y
摘要

Electro-optic modulators translate high-speed electronic signals into the optical domain and are critical components in modern telecommunication networks1,2 and microwave-photonic systems3,4. They are also expected to be building blocks for emerging applications such as quantum photonics5,6 and non-reciprocal optics7,8. All of these applications require chip-scale electro-optic modulators that operate at voltages compatible with complementary metal–oxide–semiconductor (CMOS) technology, have ultra-high electro-optic bandwidths and feature very low optical losses. Integrated modulator platforms based on materials such as silicon, indium phosphide or polymers have not yet been able to meet these requirements simultaneously because of the intrinsic limitations of the materials used. On the other hand, lithium niobate electro-optic modulators, the workhorse of the optoelectronic industry for decades9, have been challenging to integrate on-chip because of difficulties in microstructuring lithium niobate. The current generation of lithium niobate modulators are bulky, expensive, limited in bandwidth and require high drive voltages, and thus are unable to reach the full potential of the material. Here we overcome these limitations and demonstrate monolithically integrated lithium niobate electro-optic modulators that feature a CMOS-compatible drive voltage, support data rates up to 210 gigabits per second and show an on-chip optical loss of less than 0.5 decibels. We achieve this by engineering the microwave and photonic circuits to achieve high electro-optical efficiencies, ultra-low optical losses and group-velocity matching simultaneously. Our scalable modulator devices could provide cost-effective, low-power and ultra-high-speed solutions for next-generation optical communication networks and microwave photonic systems. Furthermore, our approach could lead to large-scale ultra-low-loss photonic circuits that are reconfigurable on a picosecond timescale, enabling a wide range of quantum and classical applications5,10,11 including feed-forward photonic quantum computation. Chip-scale lithium niobate electro-optic modulators that rapidly convert electrical to optical signals and use CMOS-compatible voltages could prove useful in optical communication networks, microwave photonic systems and photonic computation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小郑顺利毕业完成签到,获得积分10
刚刚
lin完成签到,获得积分20
刚刚
1秒前
AAA完成签到,获得积分10
2秒前
阿佳发布了新的文献求助10
3秒前
科研通AI6应助changewoo采纳,获得10
3秒前
华仔应助大海采纳,获得10
5秒前
skywalker完成签到,获得积分10
5秒前
5秒前
6秒前
123456发布了新的文献求助10
6秒前
6秒前
研友_VZG7GZ应助hulahula采纳,获得10
7秒前
爆米花应助勤恳怀梦采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
希望天下0贩的0应助helo采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
怕黑犀牛应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
大力信封应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
北沐完成签到,获得积分10
9秒前
田様应助科研通管家采纳,获得10
9秒前
Stella应助科研通管家采纳,获得30
9秒前
慕青应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
桐桐应助腦內小劇場采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360857
求助须知:如何正确求助?哪些是违规求助? 4491327
关于积分的说明 13982062
捐赠科研通 4394043
什么是DOI,文献DOI怎么找? 2413707
邀请新用户注册赠送积分活动 1406522
关于科研通互助平台的介绍 1381057