Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages

铌酸锂 材料科学 光电子学 光子学 CMOS芯片 电压 光调制器 电气工程 相位调制 工程类 相位噪声
作者
Cheng Wang,Mian Zhang,Xi Chen,Maxime Bertrand,Amirhassan Shams‐Ansari,S. Chandrasekhar,Peter J. Winzer,Marko Lončar
出处
期刊:Nature [Springer Nature]
卷期号:562 (7725): 101-104 被引量:2068
标识
DOI:10.1038/s41586-018-0551-y
摘要

Electro-optic modulators translate high-speed electronic signals into the optical domain and are critical components in modern telecommunication networks1,2 and microwave-photonic systems3,4. They are also expected to be building blocks for emerging applications such as quantum photonics5,6 and non-reciprocal optics7,8. All of these applications require chip-scale electro-optic modulators that operate at voltages compatible with complementary metal–oxide–semiconductor (CMOS) technology, have ultra-high electro-optic bandwidths and feature very low optical losses. Integrated modulator platforms based on materials such as silicon, indium phosphide or polymers have not yet been able to meet these requirements simultaneously because of the intrinsic limitations of the materials used. On the other hand, lithium niobate electro-optic modulators, the workhorse of the optoelectronic industry for decades9, have been challenging to integrate on-chip because of difficulties in microstructuring lithium niobate. The current generation of lithium niobate modulators are bulky, expensive, limited in bandwidth and require high drive voltages, and thus are unable to reach the full potential of the material. Here we overcome these limitations and demonstrate monolithically integrated lithium niobate electro-optic modulators that feature a CMOS-compatible drive voltage, support data rates up to 210 gigabits per second and show an on-chip optical loss of less than 0.5 decibels. We achieve this by engineering the microwave and photonic circuits to achieve high electro-optical efficiencies, ultra-low optical losses and group-velocity matching simultaneously. Our scalable modulator devices could provide cost-effective, low-power and ultra-high-speed solutions for next-generation optical communication networks and microwave photonic systems. Furthermore, our approach could lead to large-scale ultra-low-loss photonic circuits that are reconfigurable on a picosecond timescale, enabling a wide range of quantum and classical applications5,10,11 including feed-forward photonic quantum computation. Chip-scale lithium niobate electro-optic modulators that rapidly convert electrical to optical signals and use CMOS-compatible voltages could prove useful in optical communication networks, microwave photonic systems and photonic computation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到,获得积分10
刚刚
刻苦棒球发布了新的文献求助10
刚刚
Te完成签到 ,获得积分20
刚刚
欢呼的皮皮虾完成签到 ,获得积分10
1秒前
谦让谷菱发布了新的文献求助10
1秒前
单纯沛凝发布了新的文献求助30
1秒前
1秒前
dingding发布了新的文献求助10
1秒前
MelonWong发布了新的文献求助10
1秒前
Hello应助Young采纳,获得10
1秒前
2秒前
bunny完成签到,获得积分10
2秒前
12233发布了新的文献求助10
2秒前
2秒前
2秒前
郭晓丽发布了新的文献求助10
3秒前
4秒前
研友_8RyzBZ发布了新的文献求助10
4秒前
4秒前
Stella应助Liens采纳,获得10
5秒前
5秒前
赘婿应助时尚的雨筠采纳,获得10
5秒前
arizaki7发布了新的文献求助10
5秒前
will发布了新的文献求助10
5秒前
Ricky发布了新的文献求助10
6秒前
6秒前
陈0702_完成签到,获得积分20
6秒前
ZIS发布了新的文献求助10
6秒前
果粒橙发布了新的文献求助10
6秒前
lee发布了新的文献求助10
7秒前
buno应助无悔初心采纳,获得10
8秒前
227发布了新的文献求助10
10秒前
金金发布了新的文献求助10
10秒前
bkagyin应助香香的臭宝采纳,获得10
10秒前
10秒前
10秒前
岛屿发布了新的文献求助10
11秒前
细腻梦凡完成签到,获得积分10
11秒前
11秒前
虚拟的含灵完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836