Sealing ZnO nanorods for deeply rechargeable high-energy aqueous battery anodes

材料科学 纳米棒 阳极 钝化 水溶液 电偶阳极 电解质 溶解 电化学 化学工程 电极 纳米技术 冶金 阴极保护 图层(电子) 化学 物理化学 工程类
作者
Yamin Zhang,Yutong Wu,Haoran Ding,Yu Yan,Zhubo Zhou,Yong Ding,Nian Liu
出处
期刊:Nano Energy [Elsevier BV]
卷期号:53: 666-674 被引量:122
标识
DOI:10.1016/j.nanoen.2018.09.021
摘要

Rechargeable Zn-based batteries are a safe alternative to Li-ion for compatibility with aqueous electrolyte. Also, theoretical volumetric energy density of Zn-based batteries (e.g. Zn-air) is ~85% of lithium-sulfur battery. However, the rechargeability and specific capacity of Zn anodes are limited by passivation and dissolution. Here we report a [email protected]xOy core/shell nanorod structure for deeply rechargeable Zn anodes. The small diameter (<500 nm) of ZnO prevents passivation and allows full utilization of active materials, while the thin and conformal TiNxOy coating mitigates Zn dissolution in alkaline electrolyte, mechanically maintains the nanostructure, and delivers electron to nanorods. As a result, the [email protected]xOy core/shell nanorod anode achieves superior specific capacity and cycle life compared with bulk Zn foil and uncoated ZnO nanorod anodes. The discharge capacity of this anode is twice as large as that of the uncoated ZnO nanorod anode. Remarkably, our [email protected]xOy nanorod anode achieves a much higher specific discharge capacity of 508 mA h/g(Zn) than that of many previously reported zinc anodes. It can deeply cycle >640 times (64 days) in a beaker cell and deliver excellent long-term electrochemical performance (more than 7500 cycles) when cycled under start-stop conditions. The nanoscale design principles reported here is an important step towards practical deeply rechargeable Zn anodes, and can potentially be applied to overcome intrinsic limitations of other battery materials that involve soluble intermediates or insulating discharge products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
444发布了新的文献求助10
刚刚
1秒前
Owen应助xhuryts采纳,获得10
2秒前
3秒前
huihui完成签到 ,获得积分10
3秒前
ka发布了新的文献求助10
3秒前
大模型应助迅速的岂愈采纳,获得10
3秒前
3秒前
wanci应助木桶人plus采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得20
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
6秒前
wanci应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
思源应助木木三采纳,获得10
7秒前
SYLH应助mystryjoker采纳,获得10
8秒前
木樨发布了新的文献求助10
8秒前
8秒前
爱lx完成签到,获得积分10
10秒前
哈哈哈应助进_采纳,获得10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735677
求助须知:如何正确求助?哪些是违规求助? 3279465
关于积分的说明 10015528
捐赠科研通 2996202
什么是DOI,文献DOI怎么找? 1643929
邀请新用户注册赠送积分活动 781579
科研通“疑难数据库(出版商)”最低求助积分说明 749423