Retention Index Prediction Using Quantitative Structure–Retention Relationships for Improving Structure Identification in Nontargeted Metabolomics

化学 科瓦茨保留指数 鉴定(生物学) 索引(排版) 代谢组学 保留时间 色谱法 气相色谱法 植物 计算机科学 生物 万维网
作者
Yabin Wen,Ruth Amos,Mohammad Talebi,Roman Szücs,John W. Dolan,Christopher A. Pohl,Paul R. Haddad
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:90 (15): 9434-9440 被引量:40
标识
DOI:10.1021/acs.analchem.8b02084
摘要

Structure identification in nontargeted metabolomics based on liquid-chromatography coupled to mass spectrometry (LC-MS) remains a significant challenge. Quantitative structure–retention relationship (QSRR) modeling is a technique capable of accelerating the structure identification of metabolites by predicting their retention, allowing false positives to be eliminated during the interpretation of metabolomics data. In this work, 191 compounds were grouped according to molecular weight and a QSRR study was carried out on the 34 resulting groups to eliminate false positives. Partial least squares (PLS) regression combined with a Genetic algorithm (GA) was applied to construct the linear QSRR models based on a variety of VolSurf+ molecular descriptors. A novel dual-filtering approach, which combines Tanimoto similarity (TS) searching as the primary filter and retention index (RI) similarity clustering as the secondary filter, was utilized to select compounds in training sets to derive the QSRR models yielding R2 of 0.8512 and an average root mean square error in prediction (RMSEP) of 8.45%. With a retention index filter expressed as ±2 standard deviations (SD) of the error, representative compounds were predicted with >91% accuracy, and for 53% of the groups (18/34), at least one false positive compound could be eliminated. The proposed strategy can thus narrow down the number of false positives to be assessed in nontargeted metabolomics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Crw__完成签到,获得积分10
2秒前
完美世界应助feeuoo采纳,获得10
2秒前
搜集达人应助笨笨易绿采纳,获得10
3秒前
天天快乐应助lsw采纳,获得10
3秒前
BowieHuang应助落后丸子采纳,获得10
3秒前
乐乐应助天真饼干采纳,获得10
4秒前
落后的安寒完成签到 ,获得积分10
4秒前
V_4_Vendetta完成签到,获得积分10
4秒前
Owen应助SUNYAOSUNYAO采纳,获得10
4秒前
4秒前
思源应助XIEQ采纳,获得10
4秒前
紫杉罗罗完成签到,获得积分10
4秒前
FashionBoy应助健忘的板凳采纳,获得10
5秒前
123完成签到,获得积分10
5秒前
盒子发布了新的文献求助10
5秒前
5秒前
zbs发布了新的文献求助20
5秒前
uracil97完成签到,获得积分10
5秒前
Truman发布了新的文献求助10
5秒前
5秒前
科研通AI6应助螺蛳粉采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
月华完成签到,获得积分20
8秒前
8秒前
冷静的依瑶完成签到,获得积分10
8秒前
乐乐应助没烦恼采纳,获得10
9秒前
科研通AI6应助郁离子采纳,获得30
9秒前
9秒前
Sun完成签到,获得积分10
9秒前
11秒前
科研通AI6应助qmx采纳,获得10
11秒前
11秒前
12秒前
文艺裘发布了新的文献求助10
12秒前
Sheya完成签到 ,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593014
求助须知:如何正确求助?哪些是违规求助? 4678980
关于积分的说明 14807525
捐赠科研通 4642972
什么是DOI,文献DOI怎么找? 2534233
邀请新用户注册赠送积分活动 1502316
关于科研通互助平台的介绍 1469293