已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Retention Index Prediction Using Quantitative Structure–Retention Relationships for Improving Structure Identification in Nontargeted Metabolomics

化学 科瓦茨保留指数 鉴定(生物学) 索引(排版) 代谢组学 保留时间 色谱法 气相色谱法 计算机科学 植物 生物 万维网
作者
Yabin Wen,Ruth Amos,Mohammad Talebi,Roman Szücs,John W. Dolan,Christopher A. Pohl,Paul R. Haddad
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:90 (15): 9434-9440 被引量:40
标识
DOI:10.1021/acs.analchem.8b02084
摘要

Structure identification in nontargeted metabolomics based on liquid-chromatography coupled to mass spectrometry (LC-MS) remains a significant challenge. Quantitative structure–retention relationship (QSRR) modeling is a technique capable of accelerating the structure identification of metabolites by predicting their retention, allowing false positives to be eliminated during the interpretation of metabolomics data. In this work, 191 compounds were grouped according to molecular weight and a QSRR study was carried out on the 34 resulting groups to eliminate false positives. Partial least squares (PLS) regression combined with a Genetic algorithm (GA) was applied to construct the linear QSRR models based on a variety of VolSurf+ molecular descriptors. A novel dual-filtering approach, which combines Tanimoto similarity (TS) searching as the primary filter and retention index (RI) similarity clustering as the secondary filter, was utilized to select compounds in training sets to derive the QSRR models yielding R2 of 0.8512 and an average root mean square error in prediction (RMSEP) of 8.45%. With a retention index filter expressed as ±2 standard deviations (SD) of the error, representative compounds were predicted with >91% accuracy, and for 53% of the groups (18/34), at least one false positive compound could be eliminated. The proposed strategy can thus narrow down the number of false positives to be assessed in nontargeted metabolomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光完成签到,获得积分10
刚刚
daydayup完成签到,获得积分10
1秒前
研友_ZbM2qn应助mbf采纳,获得30
3秒前
陈塘关守将完成签到,获得积分10
6秒前
小曹在医院上晚班完成签到,获得积分10
7秒前
程小柒完成签到 ,获得积分10
12秒前
13秒前
清风完成签到 ,获得积分10
13秒前
13秒前
虚幻豌豆发布了新的文献求助10
14秒前
阿鑫完成签到 ,获得积分10
15秒前
王天天完成签到 ,获得积分10
15秒前
六六完成签到,获得积分10
16秒前
17秒前
19秒前
20秒前
20秒前
代扁扁完成签到 ,获得积分10
22秒前
852应助mmmwwwx采纳,获得10
23秒前
六六发布了新的文献求助10
24秒前
youngyang完成签到 ,获得积分10
25秒前
木深发布了新的文献求助10
25秒前
吕lvlvlvlvlv完成签到 ,获得积分10
26秒前
子春完成签到 ,获得积分10
26秒前
8R60d8应助lulu采纳,获得10
27秒前
照桥心美完成签到,获得积分10
33秒前
小蘑菇应助Nana采纳,获得10
35秒前
年轻冰萍完成签到,获得积分10
35秒前
照桥心美发布了新的文献求助10
38秒前
38秒前
妮妮完成签到,获得积分10
39秒前
39秒前
40秒前
范白容完成签到 ,获得积分10
40秒前
yizhilaohuli完成签到,获得积分10
41秒前
Persist6578完成签到 ,获得积分10
41秒前
111发布了新的文献求助10
42秒前
骆十八完成签到,获得积分10
42秒前
nizam发布了新的文献求助10
42秒前
健壮保温杯完成签到,获得积分10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499935
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428778
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382