聚脲
苯胺
聚氨酯
弹性体
高分子化学
异氰酸酯
单体
马来酰亚胺
化学改性
多元醇
化学
材料科学
环氧树脂
表面改性
预聚物
聚合物
有机化学
物理化学
作者
Mark F. Sonnenschein,Justin M. Virgili,Matthew Z. Larive,Benjamin L. Wendt
摘要
ABSTRACT Functionalization of polyols with aromatic amines offers a potential route to modify properties of polyurethanes, polyamides, and epoxies. Additionally, aniline termination of polyether backbones provides the opportunity to speed up reactions with isocyanates relative to hydroxyl functionalization and slow down epoxy reactions compared to reactions with primary and secondary amines. In this article, the synthesis, characterization, and physical properties of aniline‐terminated polyols with varying molecular weight, monomer type, and functionality is described. Numerous analytical techniques are employed to track the chemical modification kinetics and the resulting aniline functionalized polyol properties. In addition, synthesis and properties of poly(urethane‐urea) elastomers from several of the modified polyols are presented. The effect of hard segment composition and process temperature on tensile properties, dynamic mechanical properties, phase morphology, and chemical resistance is explored. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56 , 1730–1742
科研通智能强力驱动
Strongly Powered by AbleSci AI