The evolutionary origins of pesticide resistance

生物 抗药性 杀虫剂 抗性(生态学) 农药 杀菌剂 水平基因转移 生物技术 遗传学 突变 上位性 进化生物学 基因 生态学 基因组 农业 农学
作者
Nichola J. Hawkins,Chris Bass,A. L. Dixon,Paul Neve
出处
期刊:Biological Reviews [Wiley]
卷期号:94 (1): 135-155 被引量:593
标识
DOI:10.1111/brv.12440
摘要

Durable crop protection is an essential component of current and future food security. However, the effectiveness of pesticides is threatened by the evolution of resistant pathogens, weeds and insect pests. Pesticides are mostly novel synthetic compounds, and yet target species are often able to evolve resistance soon after a new compound is introduced. Therefore, pesticide resistance provides an interesting case of rapid evolution under strong selective pressures, which can be used to address fundamental questions concerning the evolutionary origins of adaptations to novel conditions. We ask: (i) whether this adaptive potential originates mainly from de novo mutations or from standing variation; (ii) which pre-existing traits could form the basis of resistance adaptations; and (iii) whether recurrence of resistance mechanisms among species results from interbreeding and horizontal gene transfer or from independent parallel evolution. We compare and contrast the three major pesticide groups: insecticides, herbicides and fungicides. Whilst resistance to these three agrochemical classes is to some extent united by the common evolutionary forces at play, there are also important differences. Fungicide resistance appears to evolve, in most cases, by de novo point mutations in the target-site encoding genes; herbicide resistance often evolves through selection of polygenic metabolic resistance from standing variation; and insecticide resistance evolves through a combination of standing variation and de novo mutations in the target site or major metabolic resistance genes. This has practical implications for resistance risk assessment and management, and lessons learnt from pesticide resistance should be applied in the deployment of novel, non-chemical pest-control methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
youyou完成签到,获得积分10
2秒前
偷乐发布了新的文献求助10
3秒前
满意的寒凝完成签到 ,获得积分10
3秒前
奶昔发布了新的文献求助10
3秒前
4秒前
红绿灯的黄完成签到,获得积分10
4秒前
科研通AI5应助Rjy采纳,获得10
5秒前
陈瑶完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
科研通AI2S应助Joseph0209采纳,获得10
9秒前
鹿若风完成签到,获得积分10
10秒前
10秒前
朴实的秋发布了新的文献求助10
11秒前
11秒前
12秒前
123发布了新的文献求助10
13秒前
14秒前
小六九发布了新的文献求助10
15秒前
15秒前
Sicecream发布了新的文献求助10
15秒前
啾啾完成签到,获得积分10
17秒前
科研通AI5应助PPP采纳,获得30
18秒前
虚心半莲发布了新的文献求助10
18秒前
紫菜发布了新的文献求助10
19秒前
七栀完成签到,获得积分10
19秒前
显隐发布了新的文献求助10
20秒前
Jiatu_Li发布了新的文献求助10
20秒前
小猪佩奇发布了新的文献求助10
20秒前
16是南京市完成签到 ,获得积分10
22秒前
坦率的跳跳糖完成签到 ,获得积分10
22秒前
柔弱水蓉完成签到,获得积分10
24秒前
科研通AI5应助细腻的谷秋采纳,获得10
24秒前
25秒前
苹果果汁完成签到,获得积分10
25秒前
林纹理完成签到,获得积分10
26秒前
andngf完成签到,获得积分10
27秒前
夹谷蕈完成签到 ,获得积分10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732774
求助须知:如何正确求助?哪些是违规求助? 3276882
关于积分的说明 9999546
捐赠科研通 2992584
什么是DOI,文献DOI怎么找? 1642340
邀请新用户注册赠送积分活动 780341
科研通“疑难数据库(出版商)”最低求助积分说明 748720