化学
镧系元素
细菌
组合化学
有机化学
遗传学
生物
离子
作者
Joseph A. Cotruvo,Emily R. Featherston,Joseph A. Mattocks,Jackson V. Ho,Tatiana N. Laremore
摘要
Lanthanides (Lns) have been shown recently to be essential cofactors in certain enzymes in methylotrophic bacteria. Here we identify in the model methylotroph, Methylobacterium extorquens, a highly selective LnIII-binding protein, which we name lanmodulin (LanM). LanM possesses four metal-binding EF hand motifs, commonly associated with CaII-binding proteins. In contrast to other EF hand-containing proteins, however, LanM undergoes a large conformational change from a largely disordered state to a compact, ordered state in response to picomolar concentrations of all LnIII (Ln = La-Lu, Y), whereas it only responds to CaII at near-millimolar concentrations. Mutagenesis of conserved proline residues present in LanM's EF hands, not encountered in CaII-binding EF hands, to alanine pushes CaII responsiveness into the micromolar concentration range while retaining picomolar LnIII affinity, suggesting that these unique proline residues play a key role in ensuring metal selectivity in vivo. Identification and characterization of LanM provides insights into how biology selectively recognizes low-abundance LnIII over higher-abundance CaII, pointing toward biotechnologies for detecting, sequestering, and separating these technologically important elements.
科研通智能强力驱动
Strongly Powered by AbleSci AI