Long-lasting investigation of the Cu-based oxygen carrier particles in chemical looping air separation

化学链燃烧 空气分离 氧气 分离(统计) 材料科学 化学工程 化学 燃烧 催化作用 合成气 工程类 计算机科学 机器学习 有机化学
作者
Kun Wang,Qingbo Yu
出处
期刊:Powder Technology [Elsevier]
卷期号:343: 40-48 被引量:18
标识
DOI:10.1016/j.powtec.2018.11.013
摘要

Abstract Chemical looping air separation can produce oxygen with features of operation-simple, cost-effective, and energy-effective. The stability of oxygen carrier is significant for the long-term operation of the system. Adding inert binders is one of the effective ways to improve the stabilities of oxygen carrier particles. In this paper, SiO2, ZrO2, TiO2 and MgAl2O4 were selected as inert binders to prepare Cu-based oxygen carriers and the adding ratios were 40 wt%, 50 wt% and 60 wt% respectively. The stabilities of the oxygen carriers were investigated in a packed-bed facility. Crystalline phases, surface area, crushing strength and surface morphology of the fresh and cycled oxygen carriers were measured to analyze the deactivation reasons for specific oxygen carriers. Zener pinning theory was also introduced to explain the effect of inert binders. Results of multi-cycles tests show that there is a poor stability of Cu/Ti oxygen carrier even though the adding ratio of TiO2 is as high as 60 wt%. The oxygen carrier with 50 wt% MgAl2O4 as binder presents high stability. However, the stability of Cu60Mg40 oxygen carrier decreases with proceeding of the cycles. When the SiO2 or ZrO2 adding ratio is as high as 60 wt%, the reactivity of Cu40Si60 or Cu40Zr60 oxygen carrier keeps stable under multi-cycling. The sticking together of particles caused by the crystal migration and growth is the main reason of the deactivation of specific oxygen carrier. Inert binders play important roles in preventing the agglomeration of oxygen carrier particles. However, the high binder adding ratio could decrease the oxygen transfer rate. The optimum adding ratios of SiO2, ZrO2 and MgAl2O4 in the oxygen carriers are determined as 60 wt%, 60 wt% and 50 wt% respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清河剑客发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
小麦发布了新的文献求助10
1秒前
霸气靖雁发布了新的文献求助10
2秒前
田様应助梦醒时采纳,获得10
3秒前
隐形曼青应助如意巨人采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
orixero应助独特凌萱采纳,获得10
4秒前
chlachj完成签到,获得积分20
5秒前
脑洞疼应助nenoaowu采纳,获得10
5秒前
怕黑犀牛发布了新的文献求助10
5秒前
6秒前
7秒前
shasha完成签到,获得积分10
7秒前
科研通AI6应助无私代芹采纳,获得10
8秒前
8秒前
9秒前
9秒前
11秒前
爆米花应助昕昕233采纳,获得20
12秒前
nenoaowu完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
Wangyn完成签到,获得积分10
12秒前
伯喈完成签到,获得积分10
12秒前
Duomo完成签到 ,获得积分10
13秒前
笨笨百招完成签到,获得积分10
13秒前
xiaoxiao完成签到,获得积分10
14秒前
Jupiter 1234发布了新的文献求助10
15秒前
15秒前
16秒前
LIGHT完成签到,获得积分10
16秒前
成长完成签到,获得积分10
16秒前
芳菲依旧应助chlachj采纳,获得40
16秒前
清爽老九完成签到,获得积分10
16秒前
希望天下0贩的0应助wangqq采纳,获得10
16秒前
无极微光应助叶白山采纳,获得20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660323
求助须知:如何正确求助?哪些是违规求助? 4833206
关于积分的说明 15090227
捐赠科研通 4818974
什么是DOI,文献DOI怎么找? 2578909
邀请新用户注册赠送积分活动 1533480
关于科研通互助平台的介绍 1492243