Using deep learning to predict soil properties from regional spectral data

卷积神经网络 表土 计算机科学 土壤碳 数字土壤制图 人工智能 环境科学 土壤有机质 漫反射红外傅里叶变换 深度学习 光谱图 土壤科学 土壤图 遥感 土壤水分 地质学 化学 光催化 生物化学 催化作用
作者
José Padarian,Budiman Minasny,Alex B. McBratney
出处
期刊:Geoderma Regional [Elsevier]
卷期号:16: e00198-e00198 被引量:305
标识
DOI:10.1016/j.geodrs.2018.e00198
摘要

Diffuse reflectance infrared spectroscopy allows the rapid acquisition of soil information in the field or the laboratory. The vis-NIR spectroscopy research enthusiasm around the world has created regional to global soil spectral libraries. While machine learning methods have been utilised in processing spectral data, such large regional datasets are better dealt with big data analytics. Deep learning is an exciting discipline that has already transformed the way data are analysed in many fields and could also change the way we model soil spectral data. This study developed and evaluated convolutional neural networks (CNNs), a type of deep learning algorithm, as a new way to predict soil properties from raw soil spectra. We demonstrated the effectiveness of CNNs on the LUCAS soil database, which consists of around 20,000 topsoil observations with physicochemical and biological properties from Europe. To fully utilise the capacity of the CNN model, we represented the soil spectral data as a 2-dimensional spectrogram, showing the reflectance as a function of wavelength and frequency. We showed the capacity of a CNN to be trained in a multi-task setting to simultaneously predict six soil properties in one model (OC, CEC, clay, sand, pH, total N). Compared with conventional methods such as PLS regression and Cubist regression tree, the CNN performed significantly better, especially the multi-tasking model. In the case of soil organic carbon prediction, the multi-task CNN decreased the error by 87% compared to PLS and 62% compared with Cubist. This approach proved to be effective when trained on a relatively large dataset. The high accuracy of CNN makes it an ideal tool for modelling soil spectral data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hubanj完成签到,获得积分10
刚刚
小二郎应助XiYang采纳,获得10
刚刚
卡卡西发布了新的文献求助20
1秒前
充电宝应助xu采纳,获得10
10秒前
ds完成签到,获得积分10
11秒前
11秒前
LALALA发布了新的文献求助10
11秒前
社科狗发布了新的文献求助10
12秒前
13秒前
华仔应助Ting采纳,获得10
16秒前
XiYang发布了新的文献求助10
16秒前
ZY发布了新的文献求助10
17秒前
ycp完成签到,获得积分10
19秒前
一诺相许完成签到 ,获得积分10
20秒前
应俊完成签到 ,获得积分10
22秒前
Muncy发布了新的文献求助30
23秒前
踏实三问完成签到,获得积分10
23秒前
大个应助安静碧灵采纳,获得10
23秒前
星辰大海应助Ting采纳,获得10
24秒前
woheyumi完成签到 ,获得积分10
24秒前
25秒前
韦小强发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
27秒前
xuanxuan发布了新的文献求助10
29秒前
Ting发布了新的文献求助10
31秒前
CDC发布了新的文献求助10
31秒前
科研通AI6应助点墨采纳,获得10
31秒前
嘿嘿发布了新的文献求助10
33秒前
LY发布了新的文献求助10
34秒前
34秒前
科研通AI6应助gentlewen采纳,获得10
36秒前
安静碧灵发布了新的文献求助10
38秒前
高兴的盼夏应助xuanxuan采纳,获得20
42秒前
42秒前
哈哈完成签到,获得积分10
47秒前
53秒前
一叶知秋8980完成签到 ,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648587
关于积分的说明 14685691
捐赠科研通 4590541
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491224
关于科研通互助平台的介绍 1462521