Using deep learning to predict soil properties from regional spectral data

卷积神经网络 表土 计算机科学 土壤碳 数字土壤制图 人工智能 环境科学 土壤有机质 漫反射红外傅里叶变换 深度学习 光谱图 土壤科学 土壤图 遥感 土壤水分 地质学 化学 光催化 生物化学 催化作用
作者
José Padarian,Budiman Minasny,Alex B. McBratney
出处
期刊:Geoderma Regional [Elsevier]
卷期号:16: e00198-e00198 被引量:305
标识
DOI:10.1016/j.geodrs.2018.e00198
摘要

Diffuse reflectance infrared spectroscopy allows the rapid acquisition of soil information in the field or the laboratory. The vis-NIR spectroscopy research enthusiasm around the world has created regional to global soil spectral libraries. While machine learning methods have been utilised in processing spectral data, such large regional datasets are better dealt with big data analytics. Deep learning is an exciting discipline that has already transformed the way data are analysed in many fields and could also change the way we model soil spectral data. This study developed and evaluated convolutional neural networks (CNNs), a type of deep learning algorithm, as a new way to predict soil properties from raw soil spectra. We demonstrated the effectiveness of CNNs on the LUCAS soil database, which consists of around 20,000 topsoil observations with physicochemical and biological properties from Europe. To fully utilise the capacity of the CNN model, we represented the soil spectral data as a 2-dimensional spectrogram, showing the reflectance as a function of wavelength and frequency. We showed the capacity of a CNN to be trained in a multi-task setting to simultaneously predict six soil properties in one model (OC, CEC, clay, sand, pH, total N). Compared with conventional methods such as PLS regression and Cubist regression tree, the CNN performed significantly better, especially the multi-tasking model. In the case of soil organic carbon prediction, the multi-task CNN decreased the error by 87% compared to PLS and 62% compared with Cubist. This approach proved to be effective when trained on a relatively large dataset. The high accuracy of CNN makes it an ideal tool for modelling soil spectral data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
肖敏发布了新的文献求助10
2秒前
坦率的匪发布了新的文献求助100
3秒前
3秒前
求助哥完成签到,获得积分10
4秒前
5秒前
Zhohy发布了新的文献求助10
6秒前
welldown完成签到,获得积分10
6秒前
如初完成签到,获得积分10
8秒前
8秒前
帅气男孩发布了新的文献求助10
8秒前
yyyyyge完成签到,获得积分10
8秒前
栀蓝完成签到 ,获得积分10
9秒前
加油小海豚完成签到,获得积分10
9秒前
9秒前
10秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
祁行云发布了新的文献求助10
14秒前
桃花不用开了完成签到,获得积分10
14秒前
15秒前
15秒前
个性的罡完成签到,获得积分10
15秒前
15秒前
17秒前
18秒前
极速小鱼完成签到 ,获得积分20
18秒前
完美世界应助王振123654采纳,获得10
19秒前
19秒前
四体不勤发布了新的文献求助10
20秒前
22秒前
22秒前
cocaco发布了新的文献求助10
22秒前
南方发布了新的文献求助10
22秒前
22秒前
Ava应助ccl采纳,获得10
23秒前
风清扬发布了新的文献求助10
23秒前
迷路的尔丝完成签到,获得积分10
24秒前
25秒前
河中医朵花完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618509
求助须知:如何正确求助?哪些是违规求助? 4703442
关于积分的说明 14922480
捐赠科研通 4757656
什么是DOI,文献DOI怎么找? 2550107
邀请新用户注册赠送积分活动 1512947
关于科研通互助平台的介绍 1474299