Using deep learning to predict soil properties from regional spectral data

卷积神经网络 表土 计算机科学 土壤碳 数字土壤制图 人工智能 环境科学 土壤有机质 漫反射红外傅里叶变换 深度学习 光谱图 土壤科学 土壤图 遥感 土壤水分 地质学 化学 光催化 生物化学 催化作用
作者
José Padarian,Budiman Minasny,Alex B. McBratney
出处
期刊:Geoderma Regional [Elsevier]
卷期号:16: e00198-e00198 被引量:305
标识
DOI:10.1016/j.geodrs.2018.e00198
摘要

Diffuse reflectance infrared spectroscopy allows the rapid acquisition of soil information in the field or the laboratory. The vis-NIR spectroscopy research enthusiasm around the world has created regional to global soil spectral libraries. While machine learning methods have been utilised in processing spectral data, such large regional datasets are better dealt with big data analytics. Deep learning is an exciting discipline that has already transformed the way data are analysed in many fields and could also change the way we model soil spectral data. This study developed and evaluated convolutional neural networks (CNNs), a type of deep learning algorithm, as a new way to predict soil properties from raw soil spectra. We demonstrated the effectiveness of CNNs on the LUCAS soil database, which consists of around 20,000 topsoil observations with physicochemical and biological properties from Europe. To fully utilise the capacity of the CNN model, we represented the soil spectral data as a 2-dimensional spectrogram, showing the reflectance as a function of wavelength and frequency. We showed the capacity of a CNN to be trained in a multi-task setting to simultaneously predict six soil properties in one model (OC, CEC, clay, sand, pH, total N). Compared with conventional methods such as PLS regression and Cubist regression tree, the CNN performed significantly better, especially the multi-tasking model. In the case of soil organic carbon prediction, the multi-task CNN decreased the error by 87% compared to PLS and 62% compared with Cubist. This approach proved to be effective when trained on a relatively large dataset. The high accuracy of CNN makes it an ideal tool for modelling soil spectral data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nv2r4n发布了新的文献求助10
刚刚
WxChen发布了新的文献求助20
刚刚
snowdrift完成签到,获得积分10
刚刚
刚刚
Din完成签到 ,获得积分10
刚刚
1秒前
1秒前
abcc1234完成签到,获得积分10
1秒前
Nikko完成签到,获得积分10
2秒前
cxzhao完成签到,获得积分10
2秒前
Yangpc发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
宁静致远完成签到,获得积分10
4秒前
千里发布了新的文献求助10
4秒前
我是老大应助tangsuyun采纳,获得10
4秒前
X7完成签到,获得积分10
4秒前
所所应助刘鹏宇采纳,获得10
5秒前
酷波er应助无情的白桃采纳,获得10
5秒前
科研通AI5应助小香草采纳,获得10
5秒前
星star完成签到 ,获得积分10
5秒前
6秒前
6秒前
调皮的千万完成签到,获得积分10
6秒前
狂野觅云发布了新的文献求助10
6秒前
6秒前
哈哈哈发布了新的文献求助10
6秒前
小星完成签到,获得积分10
6秒前
cc发布了新的文献求助10
7秒前
小石发布了新的文献求助10
7秒前
阿宝完成签到,获得积分10
7秒前
lsx完成签到 ,获得积分10
7秒前
Owen应助Dream采纳,获得30
7秒前
8秒前
www完成签到,获得积分20
8秒前
受伤的大米完成签到,获得积分10
8秒前
ssgecust完成签到,获得积分10
8秒前
科研通AI5应助Passion采纳,获得10
9秒前
MXJ完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740