Using deep learning to predict soil properties from regional spectral data

卷积神经网络 表土 计算机科学 土壤碳 数字土壤制图 人工智能 环境科学 土壤有机质 漫反射红外傅里叶变换 深度学习 光谱图 土壤科学 土壤图 遥感 土壤水分 地质学 化学 光催化 生物化学 催化作用
作者
José Padarian,Budiman Minasny,Alex B. McBratney
出处
期刊:Geoderma Regional [Elsevier BV]
卷期号:16: e00198-e00198 被引量:305
标识
DOI:10.1016/j.geodrs.2018.e00198
摘要

Diffuse reflectance infrared spectroscopy allows the rapid acquisition of soil information in the field or the laboratory. The vis-NIR spectroscopy research enthusiasm around the world has created regional to global soil spectral libraries. While machine learning methods have been utilised in processing spectral data, such large regional datasets are better dealt with big data analytics. Deep learning is an exciting discipline that has already transformed the way data are analysed in many fields and could also change the way we model soil spectral data. This study developed and evaluated convolutional neural networks (CNNs), a type of deep learning algorithm, as a new way to predict soil properties from raw soil spectra. We demonstrated the effectiveness of CNNs on the LUCAS soil database, which consists of around 20,000 topsoil observations with physicochemical and biological properties from Europe. To fully utilise the capacity of the CNN model, we represented the soil spectral data as a 2-dimensional spectrogram, showing the reflectance as a function of wavelength and frequency. We showed the capacity of a CNN to be trained in a multi-task setting to simultaneously predict six soil properties in one model (OC, CEC, clay, sand, pH, total N). Compared with conventional methods such as PLS regression and Cubist regression tree, the CNN performed significantly better, especially the multi-tasking model. In the case of soil organic carbon prediction, the multi-task CNN decreased the error by 87% compared to PLS and 62% compared with Cubist. This approach proved to be effective when trained on a relatively large dataset. The high accuracy of CNN makes it an ideal tool for modelling soil spectral data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
称心的海蓝完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
玄叶发布了新的文献求助20
刚刚
刚刚
科研通AI2S应助韩梅采纳,获得10
刚刚
脑洞疼应助栖木采纳,获得10
2秒前
2秒前
dddd完成签到,获得积分10
2秒前
3秒前
3秒前
chennx完成签到,获得积分10
4秒前
哈密瓜发布了新的文献求助10
5秒前
5秒前
浮游应助zou采纳,获得10
5秒前
5秒前
5秒前
阳佟水蓉完成签到,获得积分10
6秒前
克林发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
浮游应助说话请投币采纳,获得10
7秒前
7秒前
过儿完成签到,获得积分10
7秒前
8秒前
能干的荆完成签到 ,获得积分10
8秒前
拼搏的寒凝完成签到 ,获得积分10
8秒前
桐桐应助zhouzhou采纳,获得10
9秒前
啦啦啦完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
XHT发布了新的文献求助10
10秒前
香蕉觅云应助大大大骁采纳,获得10
10秒前
所所应助心行采纳,获得10
10秒前
11秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907