Front/Rear Axle Torque Vectoring Control for Electric Vehicles

扭矩 汽车工程 传动系 扭矩转向 工程类 计算机科学 控制理论(社会学) 控制(管理) 控制工程 机械工程 热力学 物理 人工智能 方向盘
作者
David Ruiz Diez,Efstathios Velenis,Davide Tavernini,Edward N. Smith,Efstathios Siampis,Amirmasoud Soltani
出处
期刊:Journal of Dynamic Systems Measurement and Control-transactions of The Asme [ASM International]
卷期号:141 (6) 被引量:5
标识
DOI:10.1115/1.4042062
摘要

Vehicles equipped with multiple electric machines allow variable distribution of propulsive and regenerative braking torques between axles or even individual wheels of the car. Left/right torque vectoring (i.e., a torque shift between wheels of the same axle) has been treated extensively in the literature; however, fewer studies focus on the torque shift between the front and rear axles, namely, front/rear torque vectoring, a drivetrain topology more suitable for mass production since it reduces complexity and cost. In this paper, we propose an online control strategy that can enhance vehicle agility and “fun-to-drive” for such a topology or, if necessary, mitigate oversteer during sublimit handling conditions. It includes a front/rear torque control allocation (CA) strategy that is formulated in terms of physical quantities that are directly connected to the vehicle dynamic behavior such as torques and forces, instead of nonphysical control signals. Hence, it is possible to easily incorporate the limitations of the electric machines and tires into the computation of the control action. Aside from the online implementation, this publication includes an offline study to assess the effectiveness of the proposed CA strategy, which illustrates the theoretical capability of affecting yaw moment that the front/rear torque vectoring strategy has for a given set of vehicle and road conditions and considering physical limitations of the tires and actuators. The development of the complete strategy is presented together with the results from hardware-in-the-loop (HiL) simulations, using a high fidelity vehicle model and covering various use cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
evak发布了新的文献求助10
1秒前
852应助小通采纳,获得10
2秒前
siriuslee99完成签到,获得积分10
2秒前
蓝刺完成签到,获得积分10
6秒前
高贵紫丝发布了新的文献求助10
6秒前
Xiaoxiao应助小小怪下士采纳,获得10
7秒前
7秒前
8秒前
xmh完成签到,获得积分10
8秒前
文迪厄尔完成签到,获得积分10
8秒前
8秒前
充电宝应助yjihn采纳,获得10
10秒前
高级丹药师完成签到,获得积分10
11秒前
weijian完成签到,获得积分10
11秒前
12秒前
morii发布了新的文献求助10
12秒前
13秒前
14秒前
小通完成签到,获得积分10
15秒前
16秒前
17秒前
星辰大海应助shinn采纳,获得10
18秒前
19秒前
19秒前
kxdxng完成签到 ,获得积分10
21秒前
Xiaoxiao应助VitoLi采纳,获得10
21秒前
沫沫发布了新的文献求助20
22秒前
wyy发布了新的文献求助10
22秒前
树精发布了新的文献求助10
24秒前
九天发布了新的文献求助10
24秒前
chunminli发布了新的文献求助10
25秒前
Akim应助wyy采纳,获得10
27秒前
汉堡包应助LY采纳,获得10
28秒前
Xiaoxiao应助风清扬采纳,获得10
28秒前
李健应助Felix采纳,获得10
29秒前
李健应助乐事薯片噢采纳,获得10
31秒前
shufessm完成签到,获得积分0
31秒前
jeeya完成签到,获得积分10
32秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528