Front/Rear Axle Torque Vectoring Control for Electric Vehicles

扭矩 汽车工程 传动系 扭矩转向 工程类 计算机科学 控制理论(社会学) 控制(管理) 控制工程 机械工程 热力学 物理 人工智能 方向盘
作者
David Ruiz Diez,Efstathios Velenis,Davide Tavernini,Edward N. Smith,Efstathios Siampis,Amirmasoud Soltani
出处
期刊:Journal of Dynamic Systems Measurement and Control-transactions of The Asme [ASME International]
卷期号:141 (6) 被引量:5
标识
DOI:10.1115/1.4042062
摘要

Vehicles equipped with multiple electric machines allow variable distribution of propulsive and regenerative braking torques between axles or even individual wheels of the car. Left/right torque vectoring (i.e., a torque shift between wheels of the same axle) has been treated extensively in the literature; however, fewer studies focus on the torque shift between the front and rear axles, namely, front/rear torque vectoring, a drivetrain topology more suitable for mass production since it reduces complexity and cost. In this paper, we propose an online control strategy that can enhance vehicle agility and “fun-to-drive” for such a topology or, if necessary, mitigate oversteer during sublimit handling conditions. It includes a front/rear torque control allocation (CA) strategy that is formulated in terms of physical quantities that are directly connected to the vehicle dynamic behavior such as torques and forces, instead of nonphysical control signals. Hence, it is possible to easily incorporate the limitations of the electric machines and tires into the computation of the control action. Aside from the online implementation, this publication includes an offline study to assess the effectiveness of the proposed CA strategy, which illustrates the theoretical capability of affecting yaw moment that the front/rear torque vectoring strategy has for a given set of vehicle and road conditions and considering physical limitations of the tires and actuators. The development of the complete strategy is presented together with the results from hardware-in-the-loop (HiL) simulations, using a high fidelity vehicle model and covering various use cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萝卜完成签到,获得积分10
刚刚
rafaam完成签到,获得积分10
1秒前
Jiaaaa完成签到,获得积分20
2秒前
2秒前
抱抱龙完成签到 ,获得积分10
4秒前
云墨完成签到 ,获得积分10
4秒前
5秒前
刘歌发布了新的文献求助10
5秒前
Stanley完成签到,获得积分20
6秒前
6秒前
YANICE发布了新的文献求助10
6秒前
6秒前
款款发布了新的文献求助10
7秒前
情怀应助emanon采纳,获得10
7秒前
吴筮完成签到,获得积分10
8秒前
9秒前
颿曦完成签到,获得积分10
9秒前
科研通AI2S应助ganhykk采纳,获得10
10秒前
端庄的如霜完成签到,获得积分10
10秒前
11秒前
qinqinwy发布了新的文献求助10
11秒前
刘歌完成签到,获得积分10
12秒前
輕語完成签到,获得积分10
13秒前
14秒前
英俊的铭应助Stanley采纳,获得10
15秒前
15秒前
JamesPei应助cxw采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
NexusExplorer应助Sakura采纳,获得10
18秒前
19秒前
Mryuan发布了新的文献求助10
20秒前
20秒前
SciGPT应助老干部采纳,获得10
20秒前
21秒前
星辰大海应助怡然梦竹采纳,获得10
21秒前
21秒前
龙江游侠完成签到,获得积分10
21秒前
23秒前
善学以致用应助李四采纳,获得10
23秒前
tao完成签到 ,获得积分10
25秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715