Added Value of Multiparametric Magnetic Resonance Imaging to Clinical Nomograms for Predicting Adverse Pathology in Prostate Cancer

医学 磁共振成像 前列腺癌 列线图 前列腺 多参数磁共振成像 放射科 癌症 病理 肿瘤科 内科学
作者
Kareem Rayn,Jonathan Bloom,Samuel Gold,Graham Hale,Joseph A. Baiocco,Sherif Mehralivand,Marcin Czarniecki,Vikram Sabarwal,Vladimir Valera,Bradford J. Wood,Maria J. Merino,Peter L. Choyke,Barış Türkbey,Peter A. Pinto
出处
期刊:The Journal of Urology [Ovid Technologies (Wolters Kluwer)]
卷期号:200 (5): 1041-1047 被引量:75
标识
DOI:10.1016/j.juro.2018.05.094
摘要

No AccessJournal of UrologyAdult Urology1 Nov 2018Added Value of Multiparametric Magnetic Resonance Imaging to Clinical Nomograms for Predicting Adverse Pathology in Prostate Cancer Kareem N. Rayn, Jonathan B. Bloom, Samuel A. Gold, Graham R. Hale, Joseph A. Baiocco, Sherif Mehralivand, Marcin Czarniecki, Vikram K. Sabarwal, Vladimir Valera, Bradford J. Wood, Maria J. Merino, Peter Choyke, Baris Turkbey, and Peter A. Pinto Kareem N. RaynKareem N. Rayn Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland , Jonathan B. BloomJonathan B. Bloom Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland , Samuel A. GoldSamuel A. Gold Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland , Graham R. HaleGraham R. Hale Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland , Joseph A. BaioccoJoseph A. Baiocco Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland , Sherif MehralivandSherif Mehralivand Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany , Marcin CzarnieckiMarcin Czarniecki Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland , Vikram K. SabarwalVikram K. Sabarwal Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland , Vladimir ValeraVladimir Valera Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland , Bradford J. WoodBradford J. Wood Center for Interventional Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland , Maria J. MerinoMaria J. Merino Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland , Peter ChoykePeter Choyke Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland , Baris TurkbeyBaris Turkbey Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland , and Peter A. PintoPeter A. Pinto Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland Center for Interventional Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland View All Author Informationhttps://doi.org/10.1016/j.juro.2018.05.094AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: We examined the additional value of preoperative prostate multiparametric magnetic resonance imaging and transrectal ultrasound/multiparametric magnetic resonance imaging fusion guided targeted biopsy when performed in combination with clinical nomograms to predict adverse pathology at radical prostatectomy. Materials and Methods: We identified all patients who underwent 3 Tesla multiparametric magnetic resonance imaging prior to fusion biopsy and radical prostatectomy. The Partin and the MSKCC (Memorial Sloan Kettering Cancer Center) preradical prostatectomy nomograms were applied to estimate the probability of organ confined disease, extraprostatic extension, seminal vesicle invasion and lymph node involvement using transrectal ultrasound guided systematic biopsy and transrectal ultrasound/multiparametric magnetic resonance imaging fusion guided targeted biopsy Gleason scores. With radical prostatectomy pathology as the gold standard we developed multivariable logistic regression models based on these nomograms before and after adding multiparametric magnetic resonance imaging to assess any additional predictive ability. Results: A total of 532 patients were included in study. When multiparametric magnetic resonance imaging findings were added to the systematic biopsy based MSKCC nomogram, the AUC increased by 0.10 for organ confined disease (p <0.001), 0.10 for extraprostatic extension (p = 0.003), 0.09 for seminal vesicle invasion (p = 0.011) and 0.06 for lymph node involvement (p = 0.120). Using Gleason scores derived from targeted biopsy compared to systematic biopsy provided an additional predictive value of organ confined disease (Δ AUC 0.07, p = 0.003) and extraprostatic extension (Δ AUC 0.07, p = 0.048) at radical prostatectomy with the MSKCC nomogram. Similar results were obtained using the Partin nomogram. Conclusions: Magnetic resonance imaging alone or in addition to standard clinical nomograms provides significant additional predictive ability of adverse pathology at the time of radical prostatectomy. This information can be greatly beneficial to urologists for preoperative planning and for counseling patients regarding the risks of future therapy. References 1 : Guidelines for primary radiotherapy of patients with prostate cancer. Radiother Oncol2006; 79: 259. Google Scholar 2 : The impact of lymph node metastases burden at radical prostatectomy. Eur Urol Focus2018; 10.1016/j.euf.2017.12.009. Crossref, Google Scholar 3 : Prediction of patient-specific risk and percentile cohort risk of pathological stage outcome using continuous prostate-specific antigen measurement, clinical stage and biopsy Gleason score. BJU Int2011; 107: 1562. Google Scholar 4 : Prediction Tools/Prostate Cancer Nomograms: Pre-Radical Prostatectomy. Available at https://www.mskcc.org/nomograms/prostate/pre_op. Accessed May 8, 2018. Google Scholar 5 : Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA2015; 313: 390. Google Scholar 6 : Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet2017; 389: 815. Google Scholar 7 : Extracapsular extension in prostate cancer: added value of diffusion-weighted MRI in patients with equivocal findings on T2-weighted imaging. AJR Am J Roentgenol2015; 204: W168. Google Scholar 8 : Comparing 3-T multiparametric MRI and the Partin tables to predict organ-confined prostate cancer after radical prostatectomy. Urol Oncol2014; 32: 1292. Google Scholar 9 : Health related quality of life in men with prostate cancer. J Urol2003; 169: 1653. Link, Google Scholar 10 : Gleason misclassification rate is independent of number of biopsy cores in systematic biopsy. Urology2016; 91: 143. Google Scholar 11 : Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part II: recommended approaches and details of specifc care options. J Urol2018; 199: 990. Link, Google Scholar 12 : EAU 2017 Guidelines on Prostate Cancer. Patient Represent. Available at https://uroweb.org/wp-content/uploads/09-Prostate-Cancer_2017_web.pdf. Accessed January 17, 2018. Google Scholar 13 : NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Prostate Cancer 2017. Available at https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed January 17, 2018. Google Scholar 14 : Prediction of organ-confined prostate cancer: incremental value of MR imaging and MR spectroscopic imaging to staging nomograms. Radiology2006; 238: 597. Google Scholar 15 : The incremental role of magnetic resonance imaging for prostate cancer staging before radical prostatectomy. Eur Urol2017; 71: 701. Google Scholar 16 : Prostate magnetic resonance imaging provides limited incremental value over the Memorial Sloan Kettering Cancer Center pre-radical prostatectomy nomogram. Urology2018; 113: 119. Google Scholar 17 : Seminal vesicle invasion on multi-parametric magnetic resonance imaging: Correlation with histopathology. Eur J Radiol2018; 98: 107. Google Scholar 18 : Utility of multiparametric magnetic resonance imaging suspicion levels for detecting prostate cancer. J Urol2013; 190: 1721. Link, Google Scholar 19 : Prostate cancer: value of multiparametric MR imaging at 3 T for detection—histopathologic correlation. Radiology2010; 255: 89. Google Scholar 20 : Comparison of magnetic resonance imaging and ultrasound (MRI-US) fusion-guided prostate biopsies obtained from axial and sagittal approaches. BJU Int2015; 115: 772. Google Scholar 21 : Imaging of lymph nodes—MRI and CT. In: MRI and CT of the Female Pelvis. Edited by . Berlin: Springer2007: 321. Google Scholar 22 : Small pelvic lymph node metastases: evaluation with MR imaging. Clin Radiol1997; 52: 437. Google Scholar 23 : Lymph node size does not correlate with the presence of prostate cancer metastasis. Urology1999; 53: 367. Google Scholar 24 : Preoperative factors predictive of posterolateral extracapsular extension after radical prostatectomy. Korean J Urol2013; 54: 824. Google Scholar 25 : Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Natl Cancer Inst2006; 98: 715. Google Scholar 26 : MRI of the prostate: interobserver agreement compared with histopathologic outcome after radical prostatectomy. Eur J Radiol2012; 81: 456. Google Scholar 27 : Prostate cancer: detection of extracapsular extension by genitourinary and general body radiologists at MR imaging. Radiology2004; 232: 140. Google Scholar 28 : Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol2015; 68: 438. Google Scholar 29 : Prospective comparison of PI-RADS version 2 and qualitative in-house categorization system in detection of prostate cancer. J Magn Reson Imaging2018; 10.1002/jmri.26025. Crossref, Google Scholar © 2018 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetailsCited byGold S, Shih J, Rais-Bahrami S, Bloom J, Vourganti S, Singla N, Baroni R, Coker M, Fialkoff J, Noschang J, Roehrborn C, Turkbey B, Pinto P, Hale G, Rayn K, Wood B, Merino M, Choyke P, Mehralivand S, Nix J, Gordetsky J, Porter K, Thomas J, Noschang J, Shakir N, Passoni N and Costa D (2019) When to Biopsy the Seminal Vesicles: A Validated Multiparametric Magnetic Resonance Imaging and Target Driven Model to Detect Seminal Vesicle Invasion of Prostate CancerJournal of Urology, VOL. 201, NO. 5, (943-949), Online publication date: 1-May-2019.Faisal F, Tosoian J, Han M, Macura K, Pavlovich C and Lotan T (2019) Clinical, Pathological and Oncologic Findings of Radical Prostatectomy with Extraprostatic Extension Diagnosed on Preoperative Prostate BiopsyJournal of Urology, VOL. 201, NO. 5, (937-942), Online publication date: 1-May-2019.Bloom J, Hale G, Gold S, Rayn K, Smith C, Mehralivand S, Czarniecki M, Valera V, Wood B, Merino M, Choyke P, Parnes H, Turkbey B and Pinto P (2018) Predicting Gleason Group Progression for Men on Prostate Cancer Active Surveillance: Role of a Negative Confirmatory Magnetic Resonance Imaging-Ultrasound Fusion BiopsyJournal of Urology, VOL. 201, NO. 1, (84-90), Online publication date: 1-Jan-2019. Volume 200Issue 5November 2018Page: 1041-1047Supplementary Materials Advertisement Copyright & Permissions© 2018 by American Urological Association Education and Research, Inc.Keywordsprostatic neoplasmsimage-guided biopsyprostatectomyrisk assessmentnomogramsMetricsAuthor Information Kareem N. Rayn Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland More articles by this author Jonathan B. Bloom Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland More articles by this author Samuel A. Gold Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland More articles by this author Graham R. Hale Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland More articles by this author Joseph A. Baiocco Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland More articles by this author Sherif Mehralivand Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany More articles by this author Marcin Czarniecki Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland More articles by this author Vikram K. Sabarwal Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland More articles by this author Vladimir Valera Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland More articles by this author Bradford J. Wood Center for Interventional Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland Financial interest and/or other relationship with Philips InVivo and National Institutes of Health Cooperative Research and Development Agreement. More articles by this author Maria J. Merino Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland More articles by this author Peter Choyke Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland More articles by this author Baris Turkbey Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland More articles by this author Peter A. Pinto Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland Center for Interventional Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland More articles by this author Expand All Advertisement PDF downloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助年轻半雪采纳,获得10
刚刚
1秒前
2秒前
5秒前
研友_X894JZ完成签到 ,获得积分10
6秒前
7秒前
8秒前
小蘑菇应助dlch采纳,获得10
8秒前
Jane_2022发布了新的文献求助10
9秒前
10秒前
科研通AI2S应助啵叽一口采纳,获得10
10秒前
11秒前
科研通AI2S应助完美的海秋采纳,获得10
11秒前
11秒前
sheneason发布了新的文献求助10
13秒前
百里凡松发布了新的文献求助10
14秒前
20秒前
百里凡松完成签到,获得积分10
20秒前
酷酷银耳汤完成签到,获得积分10
21秒前
Orange应助Jane_2022采纳,获得10
22秒前
23秒前
噜噜发布了新的文献求助20
23秒前
23秒前
dlch发布了新的文献求助10
29秒前
竹筏过海应助cc采纳,获得30
29秒前
pluto应助完美的海秋采纳,获得10
32秒前
32秒前
Akim应助Hstay采纳,获得10
34秒前
34秒前
活力听白发布了新的文献求助10
35秒前
Owen应助zy采纳,获得10
37秒前
zzzwwwkkk完成签到,获得积分10
38秒前
木木完成签到,获得积分10
39秒前
Jason完成签到,获得积分10
41秒前
45秒前
45秒前
dlch完成签到,获得积分10
46秒前
颜路完成签到,获得积分10
46秒前
48秒前
50秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240388
求助须知:如何正确求助?哪些是违规求助? 2885254
关于积分的说明 8237739
捐赠科研通 2553584
什么是DOI,文献DOI怎么找? 1381724
科研通“疑难数据库(出版商)”最低求助积分说明 649325
邀请新用户注册赠送积分活动 625009