Co-Prediction of Multiple Transportation Demands Based on Deep Spatio-Temporal Neural Network

计算机科学 卷积神经网络 需求预测 需求模式 人工神经网络 代表(政治) 共享单车 服务(商务) 数据挖掘 人工智能 运筹学 运输工程 工程类 需求管理 经济 宏观经济学 经济 程序设计语言 法学 政治 政治学
作者
Junchen Ye,Leilei Sun,Bowen Du,Yanjie Fu,Xinran Tong,Hui Xiong
标识
DOI:10.1145/3292500.3330887
摘要

Taxi and sharing bike bring great convenience to urban transportation. A lot of efforts have been made to improve the efficiency of taxi service or bike sharing system by predicting the next-period pick-up or drop-off demand. Different from the existing research, this paper is motivated by the following two facts: 1) From a micro view, an observed spatial demand at any time slot could be decomposed as a combination of many hidden spatial demand bases; 2) From a macro view, the multiple transportation demands are strongly correlated with each other, both spatially and temporally. Definitely, the above two views have great potential to revolutionize the existing taxi or bike demand prediction methods. Along this line, this paper provides a novel Co-prediction method based on Spatio-Temporal neural Network, namely, CoST-Net. In particular, a deep convolutional neural network is constructed to decompose a spatial demand into a combination of hidden spatial demand bases. The combination weight vector is used as a representation of the decomposed spatial demand. Then, a heterogeneous Long Short-Term Memory (LSTM) is proposed to integrate the states of multiple transportation demands, and also model the dynamics of them mixedly. Last, the environmental features such as humidity and temperature are incorporated with the achieved overall hidden states to predict the multiple demands simultaneously. Experiments have been conducted on real-world taxi and sharing bike demand data, results demonstrate the superiority of the proposed method over both classical and the state-of-the-art transportation demand prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_VZG7GZ应助jin采纳,获得10
1秒前
2秒前
共享精神应助郝宝真采纳,获得10
3秒前
河道蟹发布了新的文献求助10
6秒前
小夏完成签到 ,获得积分10
6秒前
zoe完成签到,获得积分10
7秒前
7秒前
9秒前
负责冰烟完成签到,获得积分10
11秒前
小小瑾完成签到,获得积分10
12秒前
闪闪绮露发布了新的文献求助20
12秒前
简单如容发布了新的文献求助30
12秒前
JamesPei应助小白采纳,获得10
13秒前
aheng发布了新的文献求助10
14秒前
牵墨完成签到,获得积分10
14秒前
鲸落发布了新的文献求助10
14秒前
kilig完成签到 ,获得积分10
14秒前
桑梓完成签到,获得积分10
15秒前
15秒前
misong完成签到,获得积分10
15秒前
Ethan完成签到,获得积分10
17秒前
徐老师完成签到,获得积分10
18秒前
19秒前
19秒前
芈冖完成签到,获得积分10
19秒前
个性的紫菜应助HaRd采纳,获得10
19秒前
21秒前
Wait发布了新的文献求助10
22秒前
ww完成签到,获得积分10
23秒前
小白发布了新的文献求助10
26秒前
fgjvythjd完成签到 ,获得积分10
27秒前
小蟹关注了科研通微信公众号
27秒前
王q完成签到,获得积分10
28秒前
汪小白完成签到,获得积分10
28秒前
结实的寄柔应助午后狂睡采纳,获得10
28秒前
平常土豆发布了新的文献求助10
29秒前
领导范儿应助zzw采纳,获得10
29秒前
yong完成签到,获得积分10
29秒前
Emma应助YY采纳,获得20
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162753
求助须知:如何正确求助?哪些是违规求助? 2813664
关于积分的说明 7901471
捐赠科研通 2473244
什么是DOI,文献DOI怎么找? 1316693
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175