Co-Prediction of Multiple Transportation Demands Based on Deep Spatio-Temporal Neural Network

计算机科学 卷积神经网络 需求预测 需求模式 人工神经网络 代表(政治) 共享单车 服务(商务) 数据挖掘 人工智能 运筹学 运输工程 工程类 需求管理 经济 宏观经济学 经济 程序设计语言 法学 政治 政治学
作者
Junchen Ye,Leilei Sun,Bowen Du,Yanjie Fu,Xinran Tong,Hui Xiong
标识
DOI:10.1145/3292500.3330887
摘要

Taxi and sharing bike bring great convenience to urban transportation. A lot of efforts have been made to improve the efficiency of taxi service or bike sharing system by predicting the next-period pick-up or drop-off demand. Different from the existing research, this paper is motivated by the following two facts: 1) From a micro view, an observed spatial demand at any time slot could be decomposed as a combination of many hidden spatial demand bases; 2) From a macro view, the multiple transportation demands are strongly correlated with each other, both spatially and temporally. Definitely, the above two views have great potential to revolutionize the existing taxi or bike demand prediction methods. Along this line, this paper provides a novel Co-prediction method based on Spatio-Temporal neural Network, namely, CoST-Net. In particular, a deep convolutional neural network is constructed to decompose a spatial demand into a combination of hidden spatial demand bases. The combination weight vector is used as a representation of the decomposed spatial demand. Then, a heterogeneous Long Short-Term Memory (LSTM) is proposed to integrate the states of multiple transportation demands, and also model the dynamics of them mixedly. Last, the environmental features such as humidity and temperature are incorporated with the achieved overall hidden states to predict the multiple demands simultaneously. Experiments have been conducted on real-world taxi and sharing bike demand data, results demonstrate the superiority of the proposed method over both classical and the state-of-the-art transportation demand prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
UNIQUE发布了新的文献求助10
1秒前
郭翔发布了新的文献求助10
3秒前
lightman发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
zhangpeipei完成签到,获得积分10
6秒前
7秒前
wing完成签到 ,获得积分10
7秒前
今后应助室内设计采纳,获得10
8秒前
CH完成签到 ,获得积分10
8秒前
Serein发布了新的文献求助10
8秒前
矮小的笑旋完成签到,获得积分10
10秒前
是小王ya完成签到,获得积分10
11秒前
小郭发布了新的文献求助10
11秒前
光亮的天真完成签到 ,获得积分10
12秒前
SHY完成签到,获得积分20
12秒前
13秒前
无私的含海完成签到,获得积分10
14秒前
14秒前
亦鱼完成签到,获得积分10
15秒前
阔达猫咪发布了新的文献求助10
15秒前
15秒前
寒霜扬名完成签到,获得积分10
16秒前
Akim应助鲸鱼打滚采纳,获得10
16秒前
anitachiu1104发布了新的文献求助10
16秒前
Serein完成签到,获得积分10
16秒前
16秒前
gcsun发布了新的文献求助10
16秒前
17秒前
QQ发布了新的文献求助10
18秒前
球球应助peanut采纳,获得10
18秒前
仁爱水之完成签到 ,获得积分10
19秒前
上官若男应助矮小的笑旋采纳,获得10
19秒前
19秒前
孙玮完成签到,获得积分10
20秒前
感松发布了新的文献求助10
20秒前
魔幻以菱完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010128
求助须知:如何正确求助?哪些是违规求助? 3550139
关于积分的说明 11304931
捐赠科研通 3284614
什么是DOI,文献DOI怎么找? 1810733
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451