Embryonic stem cell- and transcriptomics-based in vitro analyses reveal that bisphenols A, F and S have similar and very complex potential developmental toxicities

胚胎干细胞 生物 干细胞 转录组 祖细胞 胚状体 细胞生物学 发育毒性 神经干细胞 细胞分化 诱导多能干细胞 遗传学 基因 基因表达 妊娠期 怀孕
作者
Nuoya Yin,Xiaoxing Liang,Shengxian Liang,Siwei Liang,Renjun Yang,Bowen Hu,Zhanwen Cheng,Shuyu Liu,Hengzhi Dong,Sijin Liu,Francesco Faiola
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier]
卷期号:176: 330-338 被引量:46
标识
DOI:10.1016/j.ecoenv.2019.03.115
摘要

Bisphenol A (BPA) is a very versatile industrial chemical. Many reports have associated BPA with several health effects. Some bisphenol alternatives have been introduced to replace BPA in its many applications. However, comprehensive toxicological evaluations for these replacements are still lacking. In this study, we examined the potential effects of BPA, bisphenol F (BPF) and bisphenol S (BPS), on embryonic development with an in vitro stem cell toxicology system and transcriptomics analyses. Mouse embryonic stem cells (mESCs) were differentiated via embryoid body formation, either globally towards the three primary germ layers and their lineages, or specifically into neuroectoderm/neural progenitor cells. During the differentiation, cells were treated with BPA, BPF, BPS, or DMSO control. Samples were collected at different time points, for qRT-PCR and RNA-seq analyses. BPA, BPF and BPS disrupted many processes, during mESC global and neural differentiations, in very similar manners. In fact, at each time point the three chemicals differentially regulated analogous gene categories, particularly the ones involved in cell-matrix and cell-cell adhesion, signal transduction pathways, and medical conditions such as cardiovascular diseases and cancer. Our findings demonstrate once more then BPA substitutes may not be very safe. They potentially have a very complex developmental toxicity, similarly to BPA, and seem more toxic than BPA itself. In addition, our results reveal that stem cell-based developmental toxicity assays can be very comprehensive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaozi完成签到,获得积分10
刚刚
尹净汉完成签到,获得积分20
1秒前
proteinpurify发布了新的文献求助10
2秒前
科研毛毛虫完成签到,获得积分10
3秒前
真金小子完成签到 ,获得积分10
3秒前
zmy发布了新的文献求助10
3秒前
嗯嗯完成签到,获得积分20
4秒前
不配.应助孤独的问凝采纳,获得10
4秒前
enli发布了新的文献求助10
4秒前
船长完成签到,获得积分10
6秒前
隐形曼青应助枫叶采纳,获得10
9秒前
小栗发布了新的文献求助10
10秒前
DZQ完成签到,获得积分10
11秒前
11秒前
14秒前
小粒橙完成签到 ,获得积分10
15秒前
innerer发布了新的文献求助10
16秒前
17秒前
18秒前
江小鱼在查文献完成签到,获得积分10
18秒前
枫叶发布了新的文献求助10
21秒前
asww发布了新的文献求助10
21秒前
不配.应助爱吃草的灰采纳,获得10
22秒前
24秒前
xxx发布了新的文献求助10
25秒前
enli完成签到,获得积分10
26秒前
28秒前
吕凯强完成签到 ,获得积分10
30秒前
xxx完成签到,获得积分10
31秒前
miao完成签到,获得积分10
32秒前
危机完成签到 ,获得积分10
33秒前
Nathan完成签到,获得积分0
34秒前
爱科研的小魏完成签到 ,获得积分10
34秒前
34秒前
DirectorO应助小广采纳,获得10
35秒前
我叫不紧张完成签到,获得积分10
36秒前
茕凡桃七完成签到,获得积分10
38秒前
39秒前
茶博士发布了新的文献求助10
41秒前
咸鱼卷完成签到 ,获得积分10
43秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
安全防范技术与工程 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
2024 Medicinal Chemistry Reviews 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3190715
求助须知:如何正确求助?哪些是违规求助? 2839959
关于积分的说明 8026240
捐赠科研通 2502977
什么是DOI,文献DOI怎么找? 1336682
科研通“疑难数据库(出版商)”最低求助积分说明 637950
邀请新用户注册赠送积分活动 606243