可扩展性
计算机科学
计算生物学
深度学习
单细胞分析
细胞
转录组
电池类型
核糖核酸
人工智能
基因
生物
基因表达
遗传学
数据库
作者
Yue Deng,Feng Bao,Qionghai Dai,Lani F. Wu,Steven J. Altschuler
出处
期刊:Nature Methods
[Springer Nature]
日期:2019-03-18
卷期号:16 (4): 311-314
被引量:145
标识
DOI:10.1038/s41592-019-0353-7
摘要
Recent advances in large-scale single-cell RNA-seq enable fine-grained characterization of phenotypically distinct cellular states in heterogeneous tissues. We present scScope, a scalable deep-learning-based approach that can accurately and rapidly identify cell-type composition from millions of noisy single-cell gene-expression profiles. scScope uses a recurrent network to remove batch effects and iteratively impute zero values in scRNA-seq data.
科研通智能强力驱动
Strongly Powered by AbleSci AI