A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems

数学优化 早熟收敛 粒子群优化 计算机科学 多群优化 群体行为 元启发式 最优化问题 稳健性(进化) 趋同(经济学) 元优化 水准点(测量) 数学 生物化学 化学 大地测量学 经济增长 经济 基因 地理
作者
Koon Meng Ang,Wei Hong Lim,Nor Ashidi Mat Isa,Sew Sun Tiang,C. J. Wong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:140: 112882-112882 被引量:96
标识
DOI:10.1016/j.eswa.2019.112882
摘要

The original particle swarm optimization (PSO) is not able to tackle constrained optimization problems (COPs) due to the absence of constraint handling techniques. Furthermore, most existing PSO variants can only perform well in certain types of optimization problem and tend to suffer with premature convergence due to the limited search operator and directional information used to guide the search process. An improved PSO variant known as the constrained multi-swarm particle swarm optimization without velocity (CMPSOWV) is proposed in this paper to overcome the aforementioned drawbacks. Particularly, a constraint handling technique is first incorporated into CMPSOWV to guide population searching towards the feasible regions of search space before optimizing the objective function within the feasible regions. Two evolution phases known as the current swarm evolution and memory swarm evolution are also introduced to offer the multiple search operators for each CMPSOWV particle, aiming to improve the robustness of algorithm in solving different types of COPs. Finally, two diversity maintenance schemes of multi-swarm technique and probabilistic mutation operator are incorporated to prevent the premature convergence of CMPSOWV. The overall optimization performances of CMPSOWV in solving the CEC 2006 and CEC 2017 benchmark functions and real-world engineering design problems are compared with selected constrained optimization algorithms. Extensive simulation results report that the proposed CMPSOWV has demonstrated the best search accuracy among all compared methods in solving majority of problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助ZWY采纳,获得10
刚刚
李健的小迷弟应助22采纳,获得10
1秒前
1秒前
1秒前
qinmoming完成签到,获得积分10
2秒前
小胖饼饼发布了新的文献求助10
2秒前
2秒前
Flin发布了新的文献求助10
2秒前
3秒前
hui发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
Bond发布了新的文献求助10
5秒前
Fox完成签到 ,获得积分10
5秒前
6秒前
李小宁发布了新的文献求助10
6秒前
脑洞疼应助wen采纳,获得10
6秒前
fenghuo发布了新的文献求助10
7秒前
小胖饼饼完成签到,获得积分10
7秒前
8秒前
勤劳的白晴完成签到,获得积分10
8秒前
8秒前
霸气凡白发布了新的文献求助10
8秒前
完美世界应助喜欢朝雪采纳,获得10
8秒前
9秒前
9秒前
JianDan发布了新的文献求助10
9秒前
对手完成签到 ,获得积分10
9秒前
9秒前
9秒前
飞翔的霸天哥应助carl采纳,获得30
10秒前
frozensun应助David采纳,获得10
10秒前
Fiona000001发布了新的文献求助10
10秒前
完美世界应助闯关的KiKi采纳,获得10
11秒前
幸福的绿海完成签到,获得积分10
11秒前
顾矜应助yzy采纳,获得10
11秒前
11秒前
42421018关注了科研通微信公众号
11秒前
勤恳洙完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710