A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems

数学优化 早熟收敛 粒子群优化 计算机科学 多群优化 群体行为 元启发式 最优化问题 稳健性(进化) 趋同(经济学) 元优化 水准点(测量) 数学 生物化学 化学 大地测量学 经济增长 经济 基因 地理
作者
Koon Meng Ang,Wei Hong Lim,Nor Ashidi Mat Isa,Sew Sun Tiang,C. J. Wong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:140: 112882-112882 被引量:96
标识
DOI:10.1016/j.eswa.2019.112882
摘要

The original particle swarm optimization (PSO) is not able to tackle constrained optimization problems (COPs) due to the absence of constraint handling techniques. Furthermore, most existing PSO variants can only perform well in certain types of optimization problem and tend to suffer with premature convergence due to the limited search operator and directional information used to guide the search process. An improved PSO variant known as the constrained multi-swarm particle swarm optimization without velocity (CMPSOWV) is proposed in this paper to overcome the aforementioned drawbacks. Particularly, a constraint handling technique is first incorporated into CMPSOWV to guide population searching towards the feasible regions of search space before optimizing the objective function within the feasible regions. Two evolution phases known as the current swarm evolution and memory swarm evolution are also introduced to offer the multiple search operators for each CMPSOWV particle, aiming to improve the robustness of algorithm in solving different types of COPs. Finally, two diversity maintenance schemes of multi-swarm technique and probabilistic mutation operator are incorporated to prevent the premature convergence of CMPSOWV. The overall optimization performances of CMPSOWV in solving the CEC 2006 and CEC 2017 benchmark functions and real-world engineering design problems are compared with selected constrained optimization algorithms. Extensive simulation results report that the proposed CMPSOWV has demonstrated the best search accuracy among all compared methods in solving majority of problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小石头完成签到,获得积分10
1秒前
jgjghjghj完成签到,获得积分10
2秒前
Hello应助繁荣的念双采纳,获得10
3秒前
情怀应助auguscai采纳,获得10
4秒前
yyyg完成签到,获得积分10
4秒前
清衍发布了新的文献求助10
5秒前
6秒前
8秒前
丘比特应助山东及时雨采纳,获得10
8秒前
无名草0502完成签到 ,获得积分10
8秒前
孙小雨完成签到,获得积分10
8秒前
天天快乐应助weddcf采纳,获得10
8秒前
9秒前
浮游应助小于采纳,获得10
10秒前
BowieHuang应助小于采纳,获得10
10秒前
jason发布了新的文献求助10
10秒前
applecat147完成签到,获得积分10
11秒前
momo完成签到,获得积分10
11秒前
11秒前
欣慰傲薇发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
秀丽小猫咪举报wky求助涉嫌违规
12秒前
李健的小迷弟应助闫辰龙采纳,获得10
13秒前
13秒前
14秒前
14秒前
15秒前
16秒前
16秒前
16秒前
17秒前
sxy完成签到,获得积分10
17秒前
46464完成签到,获得积分20
17秒前
绒绒完成签到,获得积分10
17秒前
AA18236931952发布了新的文献求助10
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537074
求助须知:如何正确求助?哪些是违规求助? 4624638
关于积分的说明 14592736
捐赠科研通 4565155
什么是DOI,文献DOI怎么找? 2502201
邀请新用户注册赠送积分活动 1480908
关于科研通互助平台的介绍 1452098