A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems

数学优化 早熟收敛 粒子群优化 计算机科学 多群优化 群体行为 元启发式 最优化问题 稳健性(进化) 趋同(经济学) 元优化 水准点(测量) 数学 生物化学 化学 大地测量学 经济增长 经济 基因 地理
作者
Koon Meng Ang,Wei Hong Lim,Nor Ashidi Mat Isa,Sew Sun Tiang,C. J. Wong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:140: 112882-112882 被引量:96
标识
DOI:10.1016/j.eswa.2019.112882
摘要

The original particle swarm optimization (PSO) is not able to tackle constrained optimization problems (COPs) due to the absence of constraint handling techniques. Furthermore, most existing PSO variants can only perform well in certain types of optimization problem and tend to suffer with premature convergence due to the limited search operator and directional information used to guide the search process. An improved PSO variant known as the constrained multi-swarm particle swarm optimization without velocity (CMPSOWV) is proposed in this paper to overcome the aforementioned drawbacks. Particularly, a constraint handling technique is first incorporated into CMPSOWV to guide population searching towards the feasible regions of search space before optimizing the objective function within the feasible regions. Two evolution phases known as the current swarm evolution and memory swarm evolution are also introduced to offer the multiple search operators for each CMPSOWV particle, aiming to improve the robustness of algorithm in solving different types of COPs. Finally, two diversity maintenance schemes of multi-swarm technique and probabilistic mutation operator are incorporated to prevent the premature convergence of CMPSOWV. The overall optimization performances of CMPSOWV in solving the CEC 2006 and CEC 2017 benchmark functions and real-world engineering design problems are compared with selected constrained optimization algorithms. Extensive simulation results report that the proposed CMPSOWV has demonstrated the best search accuracy among all compared methods in solving majority of problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
channy发布了新的文献求助30
1秒前
1秒前
1秒前
彭于晏应助卷毛采纳,获得10
1秒前
小贝发布了新的文献求助10
2秒前
Andy完成签到,获得积分10
3秒前
4秒前
Fish发布了新的文献求助10
4秒前
Stealer发布了新的文献求助10
5秒前
azami发布了新的文献求助10
6秒前
6秒前
光之战士完成签到 ,获得积分10
7秒前
7秒前
8秒前
Shawn发布了新的文献求助10
8秒前
脑洞疼应助doctorw采纳,获得10
8秒前
bbb完成签到,获得积分10
8秒前
乐乐应助仵一采纳,获得10
10秒前
10秒前
11秒前
苗苗完成签到,获得积分10
11秒前
Ayna发布了新的文献求助10
11秒前
晚香玉发布了新的文献求助10
11秒前
11秒前
红叶完成签到,获得积分10
12秒前
3D发布了新的文献求助10
14秒前
ss_hHe发布了新的文献求助10
14秒前
苗苗发布了新的文献求助10
14秒前
15秒前
15秒前
赘婿应助azami采纳,获得10
15秒前
三席发布了新的文献求助50
15秒前
xhq发布了新的文献求助10
16秒前
所所应助明天会早睡的采纳,获得10
16秒前
16秒前
希希发布了新的文献求助10
17秒前
Moro发布了新的文献求助10
19秒前
19秒前
爱听歌的白开水完成签到 ,获得积分20
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693788
求助须知:如何正确求助?哪些是违规求助? 5094331
关于积分的说明 15212383
捐赠科研通 4850595
什么是DOI,文献DOI怎么找? 2601854
邀请新用户注册赠送积分活动 1553652
关于科研通互助平台的介绍 1511661