已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems

数学优化 早熟收敛 粒子群优化 计算机科学 多群优化 群体行为 元启发式 最优化问题 稳健性(进化) 趋同(经济学) 元优化 水准点(测量) 数学 生物化学 化学 大地测量学 经济增长 经济 基因 地理
作者
Koon Meng Ang,Wei Hong Lim,Nor Ashidi Mat Isa,Sew Sun Tiang,C. J. Wong
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:140: 112882-112882 被引量:96
标识
DOI:10.1016/j.eswa.2019.112882
摘要

The original particle swarm optimization (PSO) is not able to tackle constrained optimization problems (COPs) due to the absence of constraint handling techniques. Furthermore, most existing PSO variants can only perform well in certain types of optimization problem and tend to suffer with premature convergence due to the limited search operator and directional information used to guide the search process. An improved PSO variant known as the constrained multi-swarm particle swarm optimization without velocity (CMPSOWV) is proposed in this paper to overcome the aforementioned drawbacks. Particularly, a constraint handling technique is first incorporated into CMPSOWV to guide population searching towards the feasible regions of search space before optimizing the objective function within the feasible regions. Two evolution phases known as the current swarm evolution and memory swarm evolution are also introduced to offer the multiple search operators for each CMPSOWV particle, aiming to improve the robustness of algorithm in solving different types of COPs. Finally, two diversity maintenance schemes of multi-swarm technique and probabilistic mutation operator are incorporated to prevent the premature convergence of CMPSOWV. The overall optimization performances of CMPSOWV in solving the CEC 2006 and CEC 2017 benchmark functions and real-world engineering design problems are compared with selected constrained optimization algorithms. Extensive simulation results report that the proposed CMPSOWV has demonstrated the best search accuracy among all compared methods in solving majority of problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
欢呼的忘幽完成签到,获得积分10
5秒前
Hello应助HighFeng_Lei采纳,获得10
6秒前
9秒前
ok完成签到,获得积分10
9秒前
MrTStar完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
cherrychou完成签到,获得积分10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
13秒前
思源应助科研通管家采纳,获得10
13秒前
浮浮世世应助科研通管家采纳,获得30
13秒前
打打应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
浮浮世世应助科研通管家采纳,获得30
14秒前
14秒前
Ava应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
风中问晴发布了新的文献求助10
15秒前
迅速泽洋发布了新的文献求助10
15秒前
16秒前
CXS发布了新的文献求助10
16秒前
18秒前
秀丽的短靴完成签到,获得积分10
18秒前
所所应助吉良吉影采纳,获得10
20秒前
samantha817完成签到,获得积分10
20秒前
JamesPei应助长情火龙果采纳,获得10
21秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422