A constrained multi-swarm particle swarm optimization without velocity for constrained optimization problems

数学优化 早熟收敛 粒子群优化 计算机科学 多群优化 群体行为 元启发式 最优化问题 稳健性(进化) 趋同(经济学) 元优化 水准点(测量) 数学 生物化学 化学 大地测量学 经济增长 经济 基因 地理
作者
Koon Meng Ang,Wei Hong Lim,Nor Ashidi Mat Isa,Sew Sun Tiang,C. J. Wong
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:140: 112882-112882 被引量:96
标识
DOI:10.1016/j.eswa.2019.112882
摘要

The original particle swarm optimization (PSO) is not able to tackle constrained optimization problems (COPs) due to the absence of constraint handling techniques. Furthermore, most existing PSO variants can only perform well in certain types of optimization problem and tend to suffer with premature convergence due to the limited search operator and directional information used to guide the search process. An improved PSO variant known as the constrained multi-swarm particle swarm optimization without velocity (CMPSOWV) is proposed in this paper to overcome the aforementioned drawbacks. Particularly, a constraint handling technique is first incorporated into CMPSOWV to guide population searching towards the feasible regions of search space before optimizing the objective function within the feasible regions. Two evolution phases known as the current swarm evolution and memory swarm evolution are also introduced to offer the multiple search operators for each CMPSOWV particle, aiming to improve the robustness of algorithm in solving different types of COPs. Finally, two diversity maintenance schemes of multi-swarm technique and probabilistic mutation operator are incorporated to prevent the premature convergence of CMPSOWV. The overall optimization performances of CMPSOWV in solving the CEC 2006 and CEC 2017 benchmark functions and real-world engineering design problems are compared with selected constrained optimization algorithms. Extensive simulation results report that the proposed CMPSOWV has demonstrated the best search accuracy among all compared methods in solving majority of problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xy发布了新的文献求助10
3秒前
范小楠完成签到,获得积分10
4秒前
温婉的书蕾完成签到 ,获得积分10
5秒前
乐乐应助机智念芹采纳,获得10
7秒前
JamesPei应助张凯采纳,获得10
7秒前
孙燕应助李y梅子采纳,获得50
8秒前
细心书蕾完成签到 ,获得积分10
9秒前
范医生01完成签到,获得积分10
9秒前
11秒前
11秒前
Theprisoners应助yu采纳,获得20
14秒前
JamesPei应助天边采纳,获得10
15秒前
深情安青应助xy采纳,获得10
16秒前
17秒前
18秒前
19秒前
英俊的铭应助无私秋珊采纳,获得10
20秒前
Ace发布了新的文献求助10
20秒前
yang完成签到,获得积分10
21秒前
张凯发布了新的文献求助10
21秒前
23秒前
apoptoxin4896发布了新的文献求助10
23秒前
斯文败类应助zhourongchun采纳,获得10
24秒前
25秒前
zhaoyuqing完成签到 ,获得积分10
26秒前
Csene发布了新的文献求助10
27秒前
打打应助科研通管家采纳,获得10
27秒前
Profeto应助科研通管家采纳,获得10
28秒前
上官若男应助科研通管家采纳,获得10
28秒前
ED应助科研通管家采纳,获得10
28秒前
慕青应助科研通管家采纳,获得30
28秒前
dongjy应助科研通管家采纳,获得40
28秒前
大模型应助科研通管家采纳,获得10
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
爆米花应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
NexusExplorer应助香山叶正红采纳,获得10
30秒前
蜜HHH完成签到 ,获得积分10
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993971
求助须知:如何正确求助?哪些是违规求助? 3534571
关于积分的说明 11265961
捐赠科研通 3274483
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883224
科研通“疑难数据库(出版商)”最低求助积分说明 809712