DNA
计算生物学
嵌合体(遗传学)
胞苷脱氨酶
化学
体内
胞苷
定向进化
突变体
遗传学
基因
突变
突变
生物
生物化学
酶
作者
Christopher Moore,Louis J. Papa,Matthew D. Shoulders
摘要
Laboratory time scale evolution in vivo relies on the generation of large, mutationally diverse gene libraries to rapidly explore biomolecule sequence landscapes. Traditional global mutagenesis methods are problematic because they introduce many off-target mutations that are often lethal and can engender false positives. We report the development and application of the MutaT7 chimera, a potent and highly targeted in vivo mutagenesis agent. MutaT7 utilizes a DNA-damaging cytidine deaminase fused to a processive RNA polymerase to continuously direct mutations to specific, well-defined DNA regions of any relevant length. MutaT7 thus provides a mechanism for in vivo targeted mutagenesis across multi-kb DNA sequences. MutaT7 should prove useful in diverse organisms, opening the door to new types of in vivo evolution experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI