化学
色谱法
选择性反应监测
体内
葡萄糖醛酸化
质谱法
轨道轨道
串联质谱法
生物化学
体外
微粒体
生物
生物技术
作者
Mengrong Li,Dandan Si,Zhifei Fu,Mangmang Sang,Zixin Zhang,Erwei Liu,Wenzhi Yang,Xiumei Gao,Lifeng Han
标识
DOI:10.1016/j.jchromb.2019.02.001
摘要
Detection and identification of the in vivo metabolites of traditional Chinese medicine by untargeted profiling strategies are often confronted with severe interference from complex endogenous substances. Here we developed an integral approach, by combining untargeted data-dependent MS2 (dd-MS2) of Q-Orbitrap mass spectrometry and predictive multiple reaction monitoring-information dependent acquisition-enhanced product ion scan (pMRM-IDA-EPI) of triple quadrupole-linear ion trap (QTRAP) mass spectrometry, aiming to detect and identify more extensive metabolites in bio-samples. Ecliptae Herba (EH) is a widely consumed medicinal herb with the effects of nourishing liver/kidney, but its metabolites in vivo have not been fully elucidated. Firstly, after UHPLC separation on an HSS T3 column, chemical fingerprinting of 70% ethanolic extract of EH was performed by untargeted dd-MS2 in negative ion mode. We could characterize 41 compounds from EH, and 24 were detectable in the plasma of rats (prototypes) after oral administration of EH extract (1 g/kg). Secondly, using echinocystic acid (triterpene), wedelolactone (coumarin), and apigenin (flavonoid) as the different parent templates, an MRM list containing 150 predicted ion-pairs was established to enhance MS2 scan by pMRM-IDA-EPI, which enabled the primary identification of up to 200 metabolites. The biotransformations mainly involve oxidation, hydrogenation, methylation, glucuronidation, sulfonation etc. Thirdly, the rat plasma samples obtained after oral administration of three pure compounds (echinocystic acid, wedelolactone and apigenin) were analyzed to verify the reliability of metabolites identification, and 11, 4, and 10 metabolites were found individually. This is the first comprehensive research on the metabolism of EH in vivo.
科研通智能强力驱动
Strongly Powered by AbleSci AI