亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model

计算机科学 机器学习 人工智能 时间序列 数据挖掘 参数统计 支持向量机 系列(地层学) 领域(数学) 度量(数据仓库) 参数化模型 统计 数学 生物 古生物学 纯数学
作者
Antonio Rafael Sabino Parmezan,Vinícius M. A. Souza,Gustavo E. A. P. A. Batista
出处
期刊:Information Sciences [Elsevier BV]
卷期号:484: 302-337 被引量:241
标识
DOI:10.1016/j.ins.2019.01.076
摘要

The choice of the most promising algorithm to model and predict a particular phenomenon is one of the most prominent activities of the temporal data forecasting. Forecasting (or prediction), similarly to other data mining tasks, uses empirical evidence to select the most suitable model for a problem at hand since no modeling method can be considered as the best. However, according to our systematic literature review of the last decade, few scientific publications rigorously expose the benefits and limitations of the most popular algorithms for time series prediction. At the same time, there is a limited performance record of these models when applied to complex and highly nonlinear data. In this paper, we present one of the most extensive, impartial and comprehensible experimental evaluations ever done in the time series prediction field. From 95 datasets, we evaluate eleven predictors, seven parametric and four non-parametric, employing two multi-step-ahead projection strategies and four performance evaluation measures. We report many lessons learned and recommendations concerning the advantages, drawbacks, and the best conditions for the use of each model. The results show that SARIMA is the only statistical method able to outperform, but without a statistical difference, the following machine learning algorithms: ANN, SVM, and kNN-TSPI. However, such forecasting accuracy comes at the expense of a larger number of parameters. The evaluated datasets, as well detailed results achieved by different indexes as MSE, Theil’s U coefficient, POCID, and a recently-proposed multi-criteria performance measure are available online in our repository. Such repository is another contribution of this paper since other researchers can replicate our results and evaluate their methods more rigorously. The findings of this study will impact further research on this topic since they provide a broad insight into models selection, parameters setting, evaluation measures, and experimental setup.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaole完成签到 ,获得积分10
1秒前
4秒前
桐桐应助晚棠采纳,获得10
18秒前
38秒前
herococa应助科研通管家采纳,获得10
39秒前
39秒前
jyy应助科研通管家采纳,获得30
39秒前
45秒前
晚棠发布了新的文献求助10
45秒前
W_GR发布了新的文献求助30
51秒前
lmplzzp完成签到,获得积分10
58秒前
keyanbrant完成签到 ,获得积分10
59秒前
我爱Chem完成签到 ,获得积分10
1分钟前
晚棠完成签到 ,获得积分10
1分钟前
1分钟前
无辜笑容发布了新的文献求助10
1分钟前
陈陈完成签到,获得积分10
1分钟前
1分钟前
彬彬应助无辜笑容采纳,获得10
1分钟前
xxxzy发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
xxxzy完成签到,获得积分10
1分钟前
shkfdhjajkf完成签到,获得积分10
1分钟前
2分钟前
橙橙完成签到,获得积分10
2分钟前
章章子完成签到,获得积分10
2分钟前
章章子发布了新的文献求助10
3分钟前
3分钟前
米六发布了新的文献求助10
3分钟前
3分钟前
muhum完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
CRane发布了新的文献求助10
3分钟前
怕孤独的孤萍完成签到 ,获得积分10
3分钟前
CRane完成签到,获得积分10
4分钟前
4分钟前
GingerF应助科研通管家采纳,获得60
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957025
求助须知:如何正确求助?哪些是违规求助? 3503050
关于积分的说明 11111168
捐赠科研通 3234068
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870728
科研通“疑难数据库(出版商)”最低求助积分说明 802250