Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model

计算机科学 机器学习 人工智能 时间序列 数据挖掘 参数统计 支持向量机 系列(地层学) 领域(数学) 度量(数据仓库) 参数化模型 统计 数学 生物 古生物学 纯数学
作者
Antonio Rafael Sabino Parmezan,Valdir de Souza,Gustavo E. A. P. A. Batista
出处
期刊:Information Sciences [Elsevier]
卷期号:484: 302-337 被引量:144
标识
DOI:10.1016/j.ins.2019.01.076
摘要

The choice of the most promising algorithm to model and predict a particular phenomenon is one of the most prominent activities of the temporal data forecasting. Forecasting (or prediction), similarly to other data mining tasks, uses empirical evidence to select the most suitable model for a problem at hand since no modeling method can be considered as the best. However, according to our systematic literature review of the last decade, few scientific publications rigorously expose the benefits and limitations of the most popular algorithms for time series prediction. At the same time, there is a limited performance record of these models when applied to complex and highly nonlinear data. In this paper, we present one of the most extensive, impartial and comprehensible experimental evaluations ever done in the time series prediction field. From 95 datasets, we evaluate eleven predictors, seven parametric and four non-parametric, employing two multi-step-ahead projection strategies and four performance evaluation measures. We report many lessons learned and recommendations concerning the advantages, drawbacks, and the best conditions for the use of each model. The results show that SARIMA is the only statistical method able to outperform, but without a statistical difference, the following machine learning algorithms: ANN, SVM, and kNN-TSPI. However, such forecasting accuracy comes at the expense of a larger number of parameters. The evaluated datasets, as well detailed results achieved by different indexes as MSE, Theil’s U coefficient, POCID, and a recently-proposed multi-criteria performance measure are available online in our repository. Such repository is another contribution of this paper since other researchers can replicate our results and evaluate their methods more rigorously. The findings of this study will impact further research on this topic since they provide a broad insight into models selection, parameters setting, evaluation measures, and experimental setup.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
努力中的小鹿完成签到,获得积分20
3秒前
4秒前
悦耳秋珊发布了新的文献求助10
4秒前
脑洞疼应助天才幸运鱼采纳,获得10
5秒前
6秒前
鲸鱼应助Rosie采纳,获得10
7秒前
8秒前
茉莉静颖完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
奶冻发布了新的文献求助10
10秒前
Jennieeee发布了新的文献求助10
11秒前
小鱼同学发布了新的文献求助10
12秒前
毛豆爸爸应助Li采纳,获得10
13秒前
李健的小迷弟应助7777135采纳,获得10
13秒前
19应助小黄采纳,获得10
13秒前
14秒前
15秒前
634301059发布了新的文献求助10
16秒前
ykk发布了新的文献求助10
17秒前
土豪的黑夜完成签到,获得积分10
17秒前
20秒前
21秒前
22秒前
小马甲应助ykk采纳,获得10
23秒前
25秒前
活泼红牛发布了新的文献求助10
28秒前
啊哦嘿发布了新的文献求助10
28秒前
30秒前
31秒前
yun完成签到,获得积分10
31秒前
31秒前
32秒前
33秒前
33秒前
35秒前
jindou发布了新的文献求助10
35秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793064
关于积分的说明 7805155
捐赠科研通 2449387
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291