PowerLyra

计算机科学 地点 图划分 启发式 学位(音乐) 理论计算机科学 并行计算 计算 图形 算法 声学 语言学 操作系统 物理 哲学
作者
Rong Chen,Jiaxin Shi,Yanzhe Chen,Binyu Zang,Haibing Guan,Haibo Chen
出处
期刊:ACM Transactions on Parallel Computing [Association for Computing Machinery]
卷期号:5 (3): 1-39 被引量:99
标识
DOI:10.1145/3298989
摘要

Natural graphs with skewed distributions raise unique challenges to distributed graph computation and partitioning. Existing graph-parallel systems usually use a “one-size-fits-all” design that uniformly processes all vertices, which either suffer from notable load imbalance and high contention for high-degree vertices (e.g., Pregel and GraphLab) or incur high communication cost and memory consumption even for low-degree vertices (e.g., PowerGraph and GraphX). In this article, we argue that skewed distributions in natural graphs also necessitate differentiated processing on high-degree and low-degree vertices. We then introduce PowerLyra, a new distributed graph processing system that embraces the best of both worlds of existing graph-parallel systems. Specifically, PowerLyra uses centralized computation for low-degree vertices to avoid frequent communications and distributes the computation for high-degree vertices to balance workloads. PowerLyra further provides an efficient hybrid graph partitioning algorithm (i.e., hybrid-cut) that combines edge-cut (for low-degree vertices) and vertex-cut (for high-degree vertices) with heuristics. To improve cache locality of inter-node graph accesses, PowerLyra further provides a locality-conscious data layout optimization. PowerLyra is implemented based on the latest GraphLab and can seamlessly support various graph algorithms running in both synchronous and asynchronous execution modes. A detailed evaluation on three clusters using various graph-analytics and MLDM (Machine Learning and Data Mining) applications shows that PowerLyra outperforms PowerGraph by up to 5.53X (from 1.24X) and 3.26X (from 1.49X) for real-world and synthetic graphs, respectively, and is much faster than other systems like GraphX and Giraph, yet with much less memory consumption. A porting of hybrid-cut to GraphX further confirms the efficiency and generality of PowerLyra.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoe发布了新的文献求助10
1秒前
Leonfun123发布了新的文献求助30
5秒前
5秒前
Feng发布了新的文献求助10
11秒前
11秒前
12秒前
Swear完成签到 ,获得积分10
13秒前
笑脸完成签到,获得积分10
14秒前
一包辣条发布了新的文献求助10
15秒前
磊子发布了新的文献求助10
15秒前
Ava应助江上清风游采纳,获得10
16秒前
搜集达人应助nnnn采纳,获得10
16秒前
wj发布了新的文献求助10
17秒前
huqingyue完成签到,获得积分10
19秒前
无望关注了科研通微信公众号
21秒前
21秒前
顾矜应助Leonfun123采纳,获得10
21秒前
hhhhhhw完成签到,获得积分20
22秒前
奇博士完成签到,获得积分10
22秒前
22秒前
科研通AI2S应助魔幻安筠采纳,获得10
23秒前
互助遵法尚德应助131采纳,获得30
23秒前
25秒前
hhhhhhw发布了新的文献求助10
26秒前
aji发布了新的文献求助20
27秒前
科目三应助磊子采纳,获得10
29秒前
NMSL发布了新的文献求助30
29秒前
流星噬月发布了新的文献求助10
29秒前
一枚青椒应助彭凯采纳,获得10
31秒前
31秒前
lucky发布了新的文献求助10
32秒前
32秒前
充电宝应助gy采纳,获得10
34秒前
34秒前
沙沙发布了新的文献求助10
36秒前
研究生完成签到,获得积分10
37秒前
bkagyin应助自信搬砖采纳,获得10
37秒前
37秒前
38秒前
传奇3应助sfz采纳,获得10
38秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3378605
求助须知:如何正确求助?哪些是违规求助? 2994131
关于积分的说明 8757924
捐赠科研通 2678644
什么是DOI,文献DOI怎么找? 1467343
科研通“疑难数据库(出版商)”最低求助积分说明 678635
邀请新用户注册赠送积分活动 670229